bigstatsr: Statistical Tools for Filebacked Big Matrices

Easy-to-use, efficient, flexible and scalable statistical tools. Package bigstatsr provides and uses Filebacked Big Matrices via memory-mapping. It provides for instance matrix operations, Principal Component Analysis, sparse linear supervised models, utility functions and more. Preprint: <doi:10.1101/190926>.

Version: 0.2.3
Depends: R (≥ 3.3.2)
Imports: cowplot, doParallel, foreach, ggplot2, glue, graphics, magrittr, Matrix, methods, parallel, Rcpp, RSpectra, stats
LinkingTo: BH, Rcpp, RcppArmadillo
Suggests: spelling, biglasso, bigmemory, covr, glmnet, grid, LiblineaR, ModelMetrics, sparseSVM, testthat, viridis
Published: 2017-11-30
Author: Florian Privé [aut, cre], Michael Blum [ths], Hugues Aschard [ths]
Maintainer: Florian Privé <florian.prive.21 at gmail.com>
BugReports: https://github.com/privefl/bigstatsr/issues
License: GPL-3
URL: https://privefl.github.io/bigstatsr
NeedsCompilation: yes
Citation: bigstatsr citation info
Materials: README NEWS
CRAN checks: bigstatsr results

Downloads:

Reference manual: bigstatsr.pdf
Package source: bigstatsr_0.2.3.tar.gz
Windows binaries: r-devel: bigstatsr_0.2.3.zip, r-release: bigstatsr_0.2.3.zip, r-oldrel: bigstatsr_0.2.3.zip
OS X El Capitan binaries: r-release: bigstatsr_0.2.3.tgz
OS X Mavericks binaries: r-oldrel: bigstatsr_0.2.3.tgz
Old sources: bigstatsr archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bigstatsr to link to this page.