CRAN Package Check Results for Package DPQ

Last updated on 2022-01-20 23:52:12 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.5-1 OK
r-devel-linux-x86_64-debian-gcc 0.5-1 11.50 217.55 229.05 OK
r-devel-linux-x86_64-fedora-clang 0.5-1 383.72 OK
r-devel-linux-x86_64-fedora-gcc 0.5-1 369.24 OK
r-devel-windows-x86_64-new-UL 0.5-1 98.00 400.00 498.00 OK
r-devel-windows-x86_64-new-TK 0.5-1 OK
r-patched-linux-x86_64 0.5-1 13.00 283.91 296.91 OK
r-release-linux-x86_64 0.5-1 14.49 282.41 296.90 OK
r-release-macos-arm64 0.5-1 OK
r-release-macos-x86_64 0.5-1 OK
r-release-windows-ix86+x86_64 0.5-1 33.00 856.00 889.00 OK
r-oldrel-macos-x86_64 0.5-1 ERROR
r-oldrel-windows-ix86+x86_64 0.5-1 33.00 853.00 886.00 ERROR

Additional issues

rchk

Check Details

Version: 0.5-1
Check: tests
Result: ERROR
     Running ‘chisq-nonc-ex.R’ [15s/16s]
     Running ‘dnbinom-tst.R’ [11s/11s]
     Running ‘dnchisq-tst.R’ [0s/0s]
     Running ‘hyper-dist-ex.R’ [13s/13s]
     Running ‘pnbeta-tst.R’ [0s/0s]
     Running ‘pnt-prec.R’ [13s/14s]
     Running ‘ppois-ex.R’ [1s/1s]
     Running ‘qPoisBinom-ex.R’ [0s/0s]
     Running ‘qbeta-dist.R’ [5s/5s]
     Running ‘qbeta-tst.R’ [0s/0s]
     Running ‘qgamma-ex.R’ [7s/7s]
     Running ‘stirlerr-tst.R’ [9s/9s]
    Running the tests in ‘tests/stirlerr-tst.R’ failed.
    Last 13 lines of output:
     [33,] 1022 4.49423284e+307 1.93926546e-16 1.93926546e-16 -5.66261269e-17
     [34,] 1023 8.98846567e+307 5.88175211e-17 5.88175211e-17 5.88175211e-17
     [35,] 1024 1.79769313e+308 5.63728043e-17 5.63728043e-17 -3.68640546e-16
     >
     >
     > with(bd0v.8, stopifnot(exprs = {
     + yhl["yl",] == 0 # which is not really good and should maybe change !
     + ## Fixed now : both have 4 x Inf and then are equal {but do Note relE difference above!}
     + all.equal(ebd0["yh",], bd0, tol = 4 * .Machine$double.eps)
     + }))
     Error in eval(substitute(expr), data, enclos = parent.frame()) :
     ebd0["yh", ] and bd0 are not equal:
     Mean absolute difference: 1.44431286e+292
     Calls: with ... eval -> eval -> stopifnot -> eval -> eval -> stopifnot
     Execution halted
Flavor: r-oldrel-macos-x86_64

Version: 0.5-1
Check: running tests for arch ‘i386’
Result: ERROR
     Running 'chisq-nonc-ex.R' [45s]
     Running 'dnbinom-tst.R' [31s]
     Running 'dnchisq-tst.R' [1s]
     Running 'hyper-dist-ex.R' [51s]
     Running 'pnbeta-tst.R' [1s]
     Running 'pnt-prec.R' [36s]
     Running 'ppois-ex.R' [2s]
     Running 'qPoisBinom-ex.R' [1s]
     Running 'qbeta-dist.R' [16s]
     Running 'qbeta-tst.R' [1s]
     Running 'qgamma-ex.R' [22s]
     Running 'stirlerr-tst.R' [165s]
     Running 't-nonc-tst.R' [8s]
     Running 'wienergerm-pchisq-tst.R' [1s]
     Running 'wienergerm_nchisq.R' [9s]
    Running the tests in 'tests/stirlerr-tst.R' failed.
    Complete output:
     > #### Testing stirlerr(), bd0(), ebd0(), dpois_raw(), ...
     > #### ===============================================
     >
     > require(DPQ)
     Loading required package: DPQ
     > for(pkg in c("Rmpfr", "DPQmpfr"))
     + if(!requireNamespace(pkg)) {
     + cat("no CRAN package", sQuote(pkg), " ---> no tests here.\n")
     + q("no")
     + }
     Loading required namespace: Rmpfr
     Loading required namespace: DPQmpfr
     > require("Rmpfr")
     Loading required package: Rmpfr
     Loading required package: gmp
    
     Attaching package: 'gmp'
    
     The following objects are masked from 'package:base':
    
     %*%, apply, crossprod, matrix, tcrossprod
    
     C code of R package 'Rmpfr': GMP using 32 bits per limb
    
    
     Attaching package: 'Rmpfr'
    
     The following object is masked from 'package:gmp':
    
     outer
    
     The following object is masked from 'package:DPQ':
    
     log1mexp
    
     The following objects are masked from 'package:stats':
    
     dbinom, dgamma, dnbinom, dnorm, dpois, dt, pnorm
    
     The following objects are masked from 'package:base':
    
     cbind, pmax, pmin, rbind
    
     >
     > source(system.file(package="Matrix", "test-tools-1.R", mustWork=TRUE))
     Loading required package: tools
     > ## -> showProc.time(), assertError(), relErrV(), ...
     >
     > ##' From ..../sfsmisc/R/relErr.R --- version that *keeps* matrix
     > ## Componentwise aka "Vectorized" relative error:
     > ## Must not be NA/NaN unless one of the components is ==> deal with {0, Inf, NA}
     > relErrV <- function(target, current, eps0 = .Machine$double.xmin) {
     + n <- length(target <- as.vector(target))
     + ## assert( <length current> is multiple of <length target>) :
     + lc <- length(current)
     + if(!n) {
     + if(!lc) return(numeric()) # everything length 0
     + else stop("length(target) == 0 differing from length(current)")
     + } else if(!lc)
     + stop("length(current) == 0 differing from length(target)")
     + ## else n, lc > 0
     + if(lc %% n)
     + stop("length(current) must be a multiple of length(target)")
     + recycle <- (lc != n) # explicitly recycle
     + R <- if(recycle)
     + target[rep(seq_len(n), length.out=lc)]
     + else
     + target # (possibly "mpfr")
     + R[] <- 0
     + ## use *absolute* error when target is zero {and deal with NAs}:
     + t0 <- abs(target) < eps0 & !(na.t <- is.na(target))
     + R[t0] <- current[t0]
     + ## absolute error also when it is infinite, as (-Inf, Inf) would give NaN:
     + dInf <- is.infinite(E <- current - target)
     + R[dInf] <- E[dInf]
     + useRE <- !dInf & !t0 & (na.t | is.na(current) | (current != target))
     + R[useRE] <- (current/target)[useRE] - 1
     + if(recycle) { # should also work when target is mpfrArray
     + if(!is.null(d <- dim(current)))
     + array(R, dim=d, dimnames=dimnames(current))
     + else if(!is.null(nm <- names(current)) && is.null(names(R))) # not needed for mpfr
     + `names<-`(R, nm)
     + else R
     + } else R
     + }
     > showProc.time()
     Time (user system elapsed): 1.73 0.04 1.75
     >
     > cutoffs <- c(15,35,80,500) # cut points, n=*, in the above "algorithm"
     > ##
     > n <- c(seq(1,15, by=1/4),seq(16, 25, by=1/2), 26:30, seq(32,50, by=2), seq(55,1000, by=5),
     + 20*c(51:99), 50*(40:80), 150*(27:48), 500*(15:20))
     > st.n <- stirlerr(n)# rather use.halves=TRUE, just here , use.halves=FALSE)
     > plot(st.n ~ n, log="xy", type="b") ## looks good now
     > nM <- mpfr(n, 2048)
     > st.nM <- stirlerr(nM, use.halves=FALSE) ## << on purpose
     > all.equal(asNumeric(st.nM), st.n)# TRUE
     [1] TRUE
     > all.equal(st.nM, as(st.n,"mpfr"))# .. difference: 1.05884..............................e-15
     [1] "Mean relative difference: 3.76188328836862237848210671840523134669652278507109803395524851619517133525710813038949864253324335258957995946422636705795318842095018082968414294689177210904242078505467469226107840508716759595731520562809445423582080845132783078190770966884357013373423963183831420177657134945428163130092904941631651286987113921371270172713541623773629860605382909440081832156833672439163785232423191743273755440650299060121762088567869522015326743026183287161491630854095774843808440633833644546114257377272716830527815818340327554735024334315571779348383752605170522238377026508187338666733574758200859673498905046382318912316786e-14"
     > all.equal(roundMpfr(st.nM, 64), as(st.n,"mpfr"), tol=1e-16)# diff.: 1.05884...e-15
     [1] "Mean relative difference: 3.761883442465859304959816110162294641769e-14"
     >
     >
     > ## Very revealing plot showing the *relative* approximation error of stirlerr(<dblprec>)
     >
     > p.stirlerrDev <- function(n, precBits=2048, stnM = stirlerr(mpfr(n, precBits)), abs=FALSE,
     + ## cut points, n=*, in the stirlerr() algorithm :
     + cutoffs = c(15,35,80,500),
     + type = "b", cex = 1,
     + col = adjustcolor(1, 3/4), colnB = adjustcolor("orange4", 1/3),
     + log = if(abs) "xy" else "x",
     + xlim=NULL, ylim = if(abs) c(8e-18, max(abs(N(relE)))))
     + {
     + op <- par(las = 1, mgp=c(2, 0.6, 0))
     + on.exit(par(op))
     + st <- stirlerr(n, cutoffs=cutoffs)
     + relE <- sfsmisc::relErrV(stnM, st)
     + N <- asNumeric
     + form <- if(abs) abs(N(relE)) ~ n else N(relE) ~ n
     + plot(form, log=log, type=type, cex=cex, col=col, xlim=xlim, ylim=ylim,
     + ylab = quote(relErrV(stM, st)), axes=FALSE, frame=TRUE,
     + main = sprintf("stirlerr(n, cutoffs) rel.error [wrt stirlerr(Rmpfr::mpfr(n, %d))]",
     + precBits))
     + sfsmisc::eaxis(1, sub10=3)
     + sfsmisc::eaxis(2)
     + mtext(paste("cutoffs =", deparse(cutoffs)))
     + ylog <- par("ylog")
     + if(ylog) {
     + epsC <- c(1,2,4,8)*2^-52
     + epsCxp <- expression(epsilon[C],2*epsilon[C], 4*epsilon[C], 8*epsilon[C])
     + } else {
     + epsC <- (-2:2)*2^-52
     + epsCxp <- expression(-2*epsilon[C],-epsilon[C], 0, +epsilon[C], +2*epsilon[C])
     + }
     + dy <- diff(par("usr")[3:4])
     + if(diff(range(if(ylog) log10(epsC) else epsC)) > dy/50) {
     + lw <- rep(1/2, 5); lw[if(ylog) 1 else 3] <- 2
     + abline( h=epsC, lty=3, lwd=lw)
     + axis(4, at=epsC, epsCxp, las=2, cex.axis = 3/4, mgp=c(3/4, 1/4, 0), tck=0)
     + } else ## only x-axis
     + abline(h=if(ylog) epsC else 0, lty=3, lwd=2)
     + abline(v = cutoffs, col=colnB)
     + axis(3, at=cutoffs, col=colnB, col.axis=colnB,
     + labels = formatC(cutoffs, digits=3, width=1))
     + invisible(relE)
     + }
     >
     > do.pdf <- TRUE
     > do.pdf <- !dev.interactive(orNone = TRUE)
     > do.pdf
     [1] TRUE
     > if(do.pdf)
     + pdf("stirlerr-relErr_0.pdf", width=8, height=6)
     >
     > showProc.time()
     Time (user system elapsed): 7.68 0 7.8
     >
     > p.stirlerrDev(n=n, stnM=st.nM) # default cutoffs= c(15, 40, 85, 600)
     > ## show the zoom-in region in next plot
     > yl2 <- 3e-14*c(-1,1)
     > abline(h = yl2, col=adjustcolor("tomato", 1/4), lwd=3, lty=2)
     >
     > if(do.pdf) {
     + dev.off() ; pdf("stirlerr-relErr_1.pdf", width=8, height=6)
     + }
     >
     > ## drop small n
     > p.stirlerrDev(n=n, stnM=st.nM, xlim = c(5, max(n))) # default cutoffs= c(15, 40, 85, 600)
     > abline(h = yl2, col=adjustcolor("tomato", 1/4), lwd=3, lty=2)
     >
     > ## The first plot clearly shows we should do better:
     > ## Current code is switching to less terms too early, loosing up to 2 decimals precision
     > p.stirlerrDev(n=n, stnM=st.nM, ylim = yl2)
     > abline(h = yl2, col=adjustcolor("tomato", 1/4), lwd=3, lty=2)
     >
     > if(do.pdf) {
     + dev.off(); pdf("stirlerr-relErr_6-fin.pdf")
     + }
     >
     > showProc.time()
     Time (user system elapsed): 0.29 0 0.29
     >
     > ### ~19.April 2021: "This is close to *the* solution" (but ...)
     > cuts <- c(7, 12, 20, 26, 60, 200, 3300)
     > st. <- stirlerr(n=n, cutoffs = cuts, verbose=TRUE)
     stirlerr(n, cutoffs = 7,12,20,26,60,200,3300) : case I (n <= 7), using direct formula for n= num [1:25] 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 ...
     case II (n > 7 ), 7 cutoffs: ( 7, 12, 20, 26, 60, 200, 3300 ): n in cutoff intervals:
     (7,12] (12,20] (20,26] (26,60] (60,200]
     20 21 11 16 28
     (200,3.3e+03] (3.3e+03,Inf]
     236 42
     > relE <- asNumeric(sfsmisc::relErrV(st.nM, st.))
     > head(cbind(n, relE), 20)
     n relE
     [1,] 1.00 8.911677e-16
     [2,] 1.25 -1.448799e-15
     [3,] 1.50 1.594766e-15
     [4,] 1.75 4.066938e-15
     [5,] 2.00 -1.439463e-15
     [6,] 2.25 3.992641e-15
     [7,] 2.50 3.122191e-16
     [8,] 2.75 1.178175e-14
     [9,] 3.00 -6.421491e-15
     [10,] 3.25 -1.844078e-14
     [11,] 3.50 -2.035730e-15
     [12,] 3.75 -1.035142e-14
     [13,] 4.00 1.453032e-14
     [14,] 4.25 2.251539e-14
     [15,] 4.50 -3.369124e-14
     [16,] 4.75 -3.534188e-14
     [17,] 5.00 3.069955e-14
     [18,] 5.25 -5.701343e-14
     [19,] 5.50 6.708174e-15
     [20,] 5.75 4.460480e-14
     > ## nice printout :
     > print(cbind(n = format(n, drop0trailing = TRUE),
     + stirlerr= format(st.,scientific=FALSE, digits=4),
     + relErr = signif(relE, 4))
     + , quote=FALSE)
     n stirlerr relErr
     [1,] 1 0.081061467 8.912e-16
     [2,] 1.25 0.065431967 -1.449e-15
     [3,] 1.5 0.054814121 1.595e-15
     [4,] 1.75 0.047140611 4.067e-15
     [5,] 2 0.041340696 -1.439e-15
     [6,] 2.25 0.036805303 3.993e-15
     [7,] 2.5 0.033162874 3.122e-16
     [8,] 2.75 0.030174082 1.178e-14
     [9,] 3 0.027677926 -6.421e-15
     [10,] 3.25 0.025562158 -1.844e-14
     [11,] 3.5 0.023746164 -2.036e-15
     [12,] 3.75 0.022170565 -1.035e-14
     [13,] 4 0.020790672 1.453e-14
     [14,] 4.25 0.019572208 2.252e-14
     [15,] 4.5 0.018488451 -3.369e-14
     [16,] 4.75 0.017518259 -3.534e-14
     [17,] 5 0.016644691 3.07e-14
     [18,] 5.25 0.015854013 -5.701e-14
     [19,] 5.5 0.015134973 6.708e-15
     [20,] 5.75 0.014478266 4.46e-14
     [21,] 6 0.013876129 -6.719e-15
     [22,] 6.25 0.013322037 3.135e-15
     [23,] 6.5 0.012810465 -3.891e-15
     [24,] 6.75 0.012336703 -5.301e-14
     [25,] 7 0.011896710 1.774e-14
     [26,] 7.25 0.011487003 -3.257e-14
     [27,] 7.5 0.011104560 -1.906e-14
     [28,] 7.75 0.010746749 -1.141e-14
     [29,] 8 0.010411265 -6.86e-15
     [30,] 8.25 0.010096084 -4.267e-15
     [31,] 8.5 0.009799416 -2.769e-15
     [32,] 8.75 0.009519678 -1.653e-15
     [33,] 9 0.009255462 -1.131e-15
     [34,] 9.25 0.009005511 -8.71e-16
     [35,] 9.5 0.008768700 -5.137e-16
     [36,] 9.75 0.008544021 -3.593e-16
     [37,] 10 0.008330563 -2.639e-16
     [38,] 10.25 0.008127509 -1.544e-16
     [39,] 10.5 0.007934115 -2.982e-16
     [40,] 10.75 0.007749707 -9.565e-17
     [41,] 11 0.007573675 -1.415e-16
     [42,] 11.25 0.007405461 -1.027e-16
     [43,] 11.5 0.007244554 -2.771e-17
     [44,] 11.75 0.007090490 -2.427e-17
     [45,] 12 0.006942840 -1.174e-16
     [46,] 12.25 0.006801213 2.474e-16
     [47,] 12.5 0.006665247 7.289e-17
     [48,] 12.75 0.006534610 1.485e-16
     [49,] 13 0.006408994 1.166e-17
     [50,] 13.25 0.006288116 6.312e-17
     [51,] 13.5 0.006171712 -6.452e-18
     [52,] 13.75 0.006059539 1.379e-17
     [53,] 14 0.005951370 -4.032e-17
     [54,] 14.25 0.005846995 -2.056e-17
     [55,] 14.5 0.005746217 -3.829e-17
     [56,] 14.75 0.005648853 -6.556e-17
     [57,] 15 0.005554734 -5.734e-17
     [58,] 16 0.005207656 5.537e-19
     [59,] 16.5 0.005049887 -4.726e-17
     [60,] 17 0.004901396 4.783e-17
     [61,] 17.5 0.004761387 -1.976e-16
     [62,] 18 0.004629154 -3.698e-17
     [63,] 18.5 0.004504066 -7.949e-17
     [64,] 19 0.004385560 -2.207e-16
     [65,] 19.5 0.004273130 -2.281e-17
     [66,] 20 0.004166320 -2.273e-17
     [67,] 20.5 0.004064718 -8.882e-17
     [68,] 21 0.003967954 -1.583e-16
     [69,] 21.5 0.003875690 6.289e-19
     [70,] 22 0.003787618 -5.73e-18
     [71,] 22.5 0.003703460 -9.793e-17
     [72,] 23 0.003622960 -1.029e-16
     [73,] 23.5 0.003545885 -2.311e-17
     [74,] 24 0.003472021 -4.593e-17
     [75,] 24.5 0.003401172 -9.158e-18
     [76,] 25 0.003333156 2.703e-17
     [77,] 26 0.003204970 -1.109e-16
     [78,] 27 0.003086279 -7.897e-17
     [79,] 28 0.002976064 -9.417e-18
     [80,] 29 0.002873449 -2.472e-17
     [81,] 30 0.002777675 3.454e-18
     [82,] 32 0.002604082 -4.99e-18
     [83,] 34 0.002450910 -5.68e-17
     [84,] 36 0.002314755 -2.264e-18
     [85,] 38 0.002192932 -3.248e-18
     [86,] 40 0.002083290 -2.034e-16
     [87,] 42 0.001984089 -7.638e-17
     [88,] 44 0.001893907 -1.089e-16
     [89,] 46 0.001811566 2.649e-17
     [90,] 48 0.001736086 -8.297e-17
     [91,] 50 0.001666644 4.193e-17
     [92,] 55 0.001515135 -1.209e-16
     [93,] 60 0.001388876 -1.322e-16
     [94,] 65 0.001282041 -6.821e-17
     [95,] 70 0.001190468 -2.89e-17
     [96,] 75 0.001111105 -4.77e-17
     [97,] 80 0.001041661 -1.163e-16
     [98,] 85 0.000980388 -5.347e-17
     [99,] 90 0.000925922 -3.745e-17
     [100,] 95 0.000877190 -8.095e-17
     [101,] 100 0.000833331 -1.496e-17
     [102,] 105 0.000793648 -8.561e-17
     [103,] 110 0.000757574 -2.762e-17
     [104,] 115 0.000724636 6.351e-17
     [105,] 120 0.000694443 -6.279e-17
     [106,] 125 0.000666665 -4.699e-17
     [107,] 130 0.000641024 2.201e-17
     [108,] 135 0.000617283 -1.11e-17
     [109,] 140 0.000595237 -7.067e-17
     [110,] 145 0.000574712 -1.006e-16
     [111,] 150 0.000555555 -8.214e-17
     [112,] 155 0.000537634 -1.397e-16
     [113,] 160 0.000520833 -1.717e-16
     [114,] 165 0.000505050 -8.529e-17
     [115,] 170 0.000490196 -1.66e-17
     [116,] 175 0.000476190 -9.022e-17
     [117,] 180 0.000462962 2.137e-17
     [118,] 185 0.000450450 -8.115e-17
     [119,] 190 0.000438596 -1.624e-17
     [120,] 195 0.000427350 8.692e-18
     [121,] 200 0.000416666 -6.039e-17
     [122,] 205 0.000406504 5.003e-17
     [123,] 210 0.000396825 -1.129e-17
     [124,] 215 0.000387597 -4.967e-17
     [125,] 220 0.000378788 1.949e-17
     [126,] 225 0.000370370 -1.198e-16
     [127,] 230 0.000362319 5.385e-17
     [128,] 235 0.000354610 -1.021e-17
     [129,] 240 0.000347222 3.399e-17
     [130,] 245 0.000340136 -1.682e-16
     [131,] 250 0.000333333 -9.091e-19
     [132,] 255 0.000326797 -5.987e-18
     [133,] 260 0.000320513 -7.05e-17
     [134,] 265 0.000314465 -6.944e-17
     [135,] 270 0.000308642 -8.838e-17
     [136,] 275 0.000303030 -2.459e-17
     [137,] 280 0.000297619 5.586e-18
     [138,] 285 0.000292398 -1.002e-16
     [139,] 290 0.000287356 -4.698e-17
     [140,] 295 0.000282486 3.589e-18
     [141,] 300 0.000277778 -8.79e-17
     [142,] 305 0.000273224 5.592e-17
     [143,] 310 0.000268817 -9.722e-17
     [144,] 315 0.000264550 -1.114e-16
     [145,] 320 0.000260417 9.132e-17
     [146,] 325 0.000256410 -3.948e-17
     [147,] 330 0.000252525 -4.325e-17
     [148,] 335 0.000248756 -9.059e-17
     [149,] 340 0.000245098 -1.621e-16
     [150,] 345 0.000241546 1.338e-17
     [151,] 350 0.000238095 3.486e-17
     [152,] 355 0.000234742 -2.086e-17
     [153,] 360 0.000231481 -1.147e-16
     [154,] 365 0.000228310 3.977e-17
     [155,] 370 0.000225225 -4.736e-17
     [156,] 375 0.000222222 -5.641e-17
     [157,] 380 0.000219298 -9.447e-17
     [158,] 385 0.000216450 -7.211e-17
     [159,] 390 0.000213675 -6.235e-18
     [160,] 395 0.000210970 4.771e-17
     [161,] 400 0.000208333 -1.837e-16
     [162,] 405 0.000205761 -9.207e-17
     [163,] 410 0.000203252 4.984e-17
     [164,] 415 0.000200803 2.075e-17
     [165,] 420 0.000198413 -1.513e-16
     [166,] 425 0.000196078 -1.915e-16
     [167,] 430 0.000193798 -1.057e-16
     [168,] 435 0.000191571 -7.294e-17
     [169,] 440 0.000189394 -9.068e-17
     [170,] 445 0.000187266 -1.479e-17
     [171,] 450 0.000185185 -1.037e-16
     [172,] 455 0.000183150 -4.903e-17
     [173,] 460 0.000181159 -1.496e-19
     [174,] 465 0.000179211 -8.755e-17
     [175,] 470 0.000177305 -9.812e-17
     [176,] 475 0.000175439 1.823e-17
     [177,] 480 0.000173611 -1.402e-16
     [178,] 485 0.000171821 -1.02e-16
     [179,] 490 0.000170068 -1.477e-16
     [180,] 495 0.000168350 -8.904e-17
     [181,] 500 0.000166667 -1.651e-16
     [182,] 505 0.000165016 -2.034e-17
     [183,] 510 0.000163399 -2.66e-17
     [184,] 515 0.000161812 5.707e-17
     [185,] 520 0.000160256 -1.283e-16
     [186,] 525 0.000158730 -7.213e-17
     [187,] 530 0.000157233 2.542e-17
     [188,] 535 0.000155763 9.391e-17
     [189,] 540 0.000154321 -1.605e-16
     [190,] 545 0.000152905 -1.192e-16
     [191,] 550 0.000151515 -3.43e-17
     [192,] 555 0.000150150 4.472e-17
     [193,] 560 0.000148810 -2.576e-17
     [194,] 565 0.000147493 1.196e-16
     [195,] 570 0.000146199 1.552e-17
     [196,] 575 0.000144928 -2.12e-16
     [197,] 580 0.000143678 -1.148e-17
     [198,] 585 0.000142450 -1.407e-16
     [199,] 590 0.000141243 -8.399e-17
     [200,] 595 0.000140056 -5.62e-17
     [201,] 600 0.000138889 -9.309e-17
     [202,] 605 0.000137741 -1.692e-16
     [203,] 610 0.000136612 6.936e-17
     [204,] 615 0.000135501 -8.611e-17
     [205,] 620 0.000134409 3.987e-17
     [206,] 625 0.000133333 -4.148e-17
     [207,] 630 0.000132275 -1.1e-16
     [208,] 635 0.000131234 -6.594e-17
     [209,] 640 0.000130208 -2.265e-17
     [210,] 645 0.000129199 2.465e-17
     [211,] 650 0.000128205 -5.088e-17
     [212,] 655 0.000127226 -5.245e-17
     [213,] 660 0.000126263 -1.364e-16
     [214,] 665 0.000125313 -1.784e-16
     [215,] 670 0.000124378 -4.501e-17
     [216,] 675 0.000123457 -3.045e-17
     [217,] 680 0.000122549 -7.071e-17
     [218,] 685 0.000121654 -8.794e-17
     [219,] 690 0.000120773 -9.828e-17
     [220,] 695 0.000119904 -7.036e-17
     [221,] 700 0.000119048 -1.581e-17
     [222,] 705 0.000118203 -3.835e-17
     [223,] 710 0.000117371 -5.492e-17
     [224,] 715 0.000116550 -2.908e-17
     [225,] 720 0.000115741 -3.447e-17
     [226,] 725 0.000114943 5.42e-17
     [227,] 730 0.000114155 -1.388e-16
     [228,] 735 0.000113379 -1.045e-16
     [229,] 740 0.000112613 -3.46e-17
     [230,] 745 0.000111857 1.05e-17
     [231,] 750 0.000111111 -3.025e-17
     [232,] 755 0.000110375 -1.144e-16
     [233,] 760 0.000109649 -2.414e-17
     [234,] 765 0.000108932 -7.09e-17
     [235,] 770 0.000108225 -4.449e-17
     [236,] 775 0.000107527 -1.123e-16
     [237,] 780 0.000106838 -3.249e-18
     [238,] 785 0.000106157 2.321e-17
     [239,] 790 0.000105485 5.064e-17
     [240,] 795 0.000104822 -1.233e-16
     [241,] 800 0.000104167 -1.748e-16
     [242,] 805 0.000103520 -1.378e-16
     [243,] 810 0.000102881 -9.075e-17
     [244,] 815 0.000102249 -1.586e-16
     [245,] 820 0.000101626 -7.227e-17
     [246,] 825 0.000101010 -3.838e-17
     [247,] 830 0.000100402 -2.964e-17
     [248,] 835 0.000099800 -1.876e-16
     [249,] 840 0.000099206 -2.759e-17
     [250,] 845 0.000098619 -1.536e-16
     [251,] 850 0.000098039 -8.679e-17
     [252,] 855 0.000097466 -1.494e-16
     [253,] 860 0.000096899 -1.483e-16
     [254,] 865 0.000096339 2.876e-17
     [255,] 870 0.000095785 -3.176e-17
     [256,] 875 0.000095238 2.357e-17
     [257,] 880 0.000094697 -1.091e-16
     [258,] 885 0.000094162 -5.772e-17
     [259,] 890 0.000093633 -1.744e-16
     [260,] 895 0.000093110 -1.181e-16
     [261,] 900 0.000092593 -1.335e-16
     [262,] 905 0.000092081 -5.527e-17
     [263,] 910 0.000091575 -1.198e-16
     [264,] 915 0.000091075 -1.207e-16
     [265,] 920 0.000090580 -5.728e-17
     [266,] 925 0.000090090 -4.742e-19
     [267,] 930 0.000089606 -5.574e-17
     [268,] 935 0.000089127 8.545e-17
     [269,] 940 0.000088652 -1.068e-16
     [270,] 945 0.000088183 -1.4e-17
     [271,] 950 0.000087719 -4.414e-17
     [272,] 955 0.000087260 -7.53e-17
     [273,] 960 0.000086806 -1.683e-16
     [274,] 965 0.000086356 3.832e-17
     [275,] 970 0.000085911 -7.401e-17
     [276,] 975 0.000085470 -5.156e-17
     [277,] 980 0.000085034 -7.189e-17
     [278,] 985 0.000084602 -6.9e-17
     [279,] 990 0.000084175 -6.533e-17
     [280,] 995 0.000083752 -1.062e-16
     [281,] 1000 0.000083333 4.47e-17
     [282,] 1020 0.000081699 -2.043e-16
     [283,] 1040 0.000080128 3.465e-17
     [284,] 1060 0.000078616 1.744e-17
     [285,] 1080 0.000077160 2.023e-19
     [286,] 1100 0.000075758 -8.344e-17
     [287,] 1120 0.000074405 4.223e-18
     [288,] 1140 0.000073099 1.678e-17
     [289,] 1160 0.000071839 1.405e-17
     [290,] 1180 0.000070621 1.336e-17
     [291,] 1200 0.000069444 -3.825e-18
     [292,] 1220 0.000068306 -1.316e-16
     [293,] 1240 0.000067204 4.497e-17
     [294,] 1260 0.000066138 8.852e-17
     [295,] 1280 0.000065104 -4.096e-17
     [296,] 1300 0.000064103 -1.05e-16
     [297,] 1320 0.000063131 -1.565e-17
     [298,] 1340 0.000062189 8.636e-17
     [299,] 1360 0.000061275 -8.111e-17
     [300,] 1380 0.000060386 -4.864e-17
     [301,] 1400 0.000059524 -1.377e-16
     [302,] 1420 0.000058685 -4.785e-17
     [303,] 1440 0.000057870 7.827e-17
     [304,] 1460 0.000057078 -3.29e-17
     [305,] 1480 0.000056306 -2.93e-17
     [306,] 1500 0.000055556 3.087e-17
     [307,] 1520 0.000054825 1.479e-17
     [308,] 1540 0.000054113 -6.619e-17
     [309,] 1560 0.000053419 -6.097e-17
     [310,] 1580 0.000052743 -1.745e-16
     [311,] 1600 0.000052083 -1.245e-16
     [312,] 1620 0.000051440 -3.918e-17
     [313,] 1640 0.000050813 -6.98e-17
     [314,] 1660 0.000050201 -9.32e-17
     [315,] 1680 0.000049603 -6.853e-18
     [316,] 1700 0.000049020 -8.787e-17
     [317,] 1720 0.000048450 3.516e-17
     [318,] 1740 0.000047893 -4.948e-17
     [319,] 1760 0.000047348 1.593e-17
     [320,] 1780 0.000046816 -6.248e-17
     [321,] 1800 0.000046296 5.308e-17
     [322,] 1820 0.000045788 -5.345e-17
     [323,] 1840 0.000045290 -5.611e-17
     [324,] 1860 0.000044803 -1.23e-16
     [325,] 1880 0.000044326 -2.026e-17
     [326,] 1900 0.000043860 7.87e-17
     [327,] 1920 0.000043403 -5.773e-17
     [328,] 1940 0.000042955 4.493e-18
     [329,] 1960 0.000042517 -4.638e-17
     [330,] 1980 0.000042088 -4.982e-17
     [331,] 2000 0.000041667 -1.709e-17
     [332,] 2050 0.000040650 1.564e-17
     [333,] 2100 0.000039683 5.082e-17
     [334,] 2150 0.000038760 -5.206e-17
     [335,] 2200 0.000037879 3.535e-17
     [336,] 2250 0.000037037 -2.37e-17
     [337,] 2300 0.000036232 -1.453e-16
     [338,] 2350 0.000035461 -1.478e-16
     [339,] 2400 0.000034722 7.893e-17
     [340,] 2450 0.000034014 1.053e-16
     [341,] 2500 0.000033333 -1.249e-16
     [342,] 2550 0.000032680 -2.632e-17
     [343,] 2600 0.000032051 -3.594e-17
     [344,] 2650 0.000031447 -2.662e-17
     [345,] 2700 0.000030864 -1.459e-16
     [346,] 2750 0.000030303 -1.228e-16
     [347,] 2800 0.000029762 2.86e-18
     [348,] 2850 0.000029240 1.979e-17
     [349,] 2900 0.000028736 -8.976e-18
     [350,] 2950 0.000028249 -8.074e-17
     [351,] 3000 0.000027778 3.047e-17
     [352,] 3050 0.000027322 -8.783e-17
     [353,] 3100 0.000026882 -9.946e-17
     [354,] 3150 0.000026455 -5.146e-17
     [355,] 3200 0.000026042 -3.577e-17
     [356,] 3250 0.000025641 -9.052e-17
     [357,] 3300 0.000025253 -7.322e-17
     [358,] 3350 0.000024876 -1.866e-16
     [359,] 3400 0.000024510 -1.21e-17
     [360,] 3450 0.000024155 -1.608e-16
     [361,] 3500 0.000023810 9.896e-18
     [362,] 3550 0.000023474 -1.422e-16
     [363,] 3600 0.000023148 -7.342e-17
     [364,] 3650 0.000022831 -1.147e-16
     [365,] 3700 0.000022523 -1.354e-16
     [366,] 3750 0.000022222 -7.032e-17
     [367,] 3800 0.000021930 -9.196e-17
     [368,] 3850 0.000021645 -1.068e-16
     [369,] 3900 0.000021368 -1.001e-16
     [370,] 3950 0.000021097 -8.581e-18
     [371,] 4000 0.000020833 -8.034e-17
     [372,] 4050 0.000020576 -1.234e-16
     [373,] 4200 0.000019841 -1.95e-16
     [374,] 4350 0.000019157 -1.488e-16
     [375,] 4500 0.000018519 -1.747e-16
     [376,] 4650 0.000017921 -1.313e-16
     [377,] 4800 0.000017361 -7.346e-17
     [378,] 4950 0.000016835 -1.846e-16
     [379,] 5100 0.000016340 4.508e-18
     [380,] 5250 0.000015873 -1.385e-16
     [381,] 5400 0.000015432 -9.5e-17
     [382,] 5550 0.000015015 -3.488e-17
     [383,] 5700 0.000014620 -2.353e-17
     [384,] 5850 0.000014245 -3.92e-17
     [385,] 6000 0.000013889 -1.174e-16
     [386,] 6150 0.000013550 -1.588e-16
     [387,] 6300 0.000013228 -2.74e-17
     [388,] 6450 0.000012920 -2.363e-17
     [389,] 6600 0.000012626 -7.098e-17
     [390,] 6750 0.000012346 -8.038e-18
     [391,] 6900 0.000012077 -4.655e-17
     [392,] 7050 0.000011820 -6.789e-17
     [393,] 7200 0.000011574 -4.496e-17
     [394,] 7500 0.000011111 -4.884e-17
     [395,] 8000 0.000010417 -7.881e-17
     [396,] 8500 0.000009804 -9.742e-19
     [397,] 9000 0.000009259 -3.391e-18
     [398,] 9500 0.000008772 6.364e-17
     [399,] 10000 0.000008333 -3.753e-17
     >
     > if(do.pdf) {
     + dev.off(); pdf("stirlerr-relErr_6-fin-1.pdf")
     + }
     >
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts)
     >
     > if(do.pdf) { dev.off(); pdf("stirlerr-relErr_6-fin-2.pdf") }
     >
     > ## zoom in ==> {good for n >= 10}
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", ylim = 2e-15*c(-1,1),
     + cutoffs = cuts)## old default cutoffs = c(15,35, 80, 500)
     >
     > if(do.pdf) { dev.off(); pdf("stirlerr-tst_others.pdf") }
     >
     > ##-- April 20: we more terms up to S10 in stirlerr() -- more cutoffs
     > n <- sfsmisc::lseq(1/16, 5000, length=4096)
     > nM <- mpfr(n, 2048)
     > st.nM <- stirlerr(nM, use.halves=FALSE) ## << on purpose
     >
     > cuts <- c(5.4, 7.5, 8.5, 10.625, 12.125, 20, 26, 60, 200, 3300)
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts)
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts, abs=TRUE)
     > ## using exact values sferr_halves[]
     > lines((0:30)/2, abs(stirlerr((0:30)/2, cutoffs=cuts, verbose=TRUE)/DPQ:::sferr_halves - 1), type="o", col=2,lwd=2)
     stirlerr(n, cutoffs = 5.4,7.5,8.5,10.62,12.12,20,26,60,200,3300) : case I (n <= 5.4), using direct formula for n= num [1:11] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...
     case II (n > 5.4 ), 10 cutoffs: ( 5.4, 7.5, 8.5, 10.625, 12.125, 20, 26, 60, 200, 3300 ): n in cutoff intervals:
     (5.4,7.5] (7.5,8.5] (8.5,10.6] (10.6,12.1] (12.1,20]
     5 2 4 3 6
     (20,26] (26,60] (60,200] (200,3.3e+03] (3.3e+03,Inf]
     0 0 0 0 0
     > ## should we e.g., use interpolation spline through sfserr_halves[] for n <= 7.5
     > ## -- doing the interpolation on the log(1 - 12*x*stirlerr(x)) vs log2(x) scale -- maybe ?
     > curve(1-12*x*stirlerr(x, verbose=TRUE), 1/64, 8, log="xy", n=2048)
     stirlerr(n, scheme = "R3") : case I (n <= 15), using direct formula for n= num [1:2048] 0.0156 0.0157 0.0157 0.0158 0.0158 ...
     > ## just need "true" values for x = 2^-(6,5,4,3,2) in addition to those we already have at x = 1/2, 1.5, 2, 2.5, ..., 7.5, 8
     >
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts, ylim=c(-1,1)*4e-14)
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts, ylim=c(-1,1)*1e-15)
     >
     > st. <- stirlerr(n=n, cutoffs = cuts, verbose=TRUE)
     stirlerr(n, cutoffs = 5.4,7.5,8.5,10.62,12.12,20,26,60,200,3300) : case I (n <= 5.4), using direct formula for n= num [1:1618] 0.0625 0.0627 0.0628 0.063 0.0632 ...
     case II (n > 5.4 ), 10 cutoffs: ( 5.4, 7.5, 8.5, 10.625, 12.125, 20, 26, 60, 200, 3300 ): n in cutoff intervals:
     (5.4,7.5] (7.5,8.5] (8.5,10.6] (10.6,12.1] (12.1,20]
     119 45 81 48 182
     (20,26] (26,60] (60,200] (200,3.3e+03] (3.3e+03,Inf]
     95 303 437 1017 151
     > relE <- asNumeric(sfsmisc::relErrV(st.nM, st.))
     > head(cbind(n, relE), 20)
     n relE
     [1,] 0.06250000 1.145349e-16
     [2,] 0.06267255 2.991784e-16
     [3,] 0.06284557 -8.156474e-17
     [4,] 0.06301908 1.528496e-16
     [5,] 0.06319306 9.174643e-17
     [6,] 0.06336752 -7.677091e-17
     [7,] 0.06354246 5.967122e-17
     [8,] 0.06371789 4.722483e-16
     [9,] 0.06389380 1.721318e-16
     [10,] 0.06407019 3.924397e-16
     [11,] 0.06424708 -1.777654e-16
     [12,] 0.06442445 5.391117e-16
     [13,] 0.06460231 3.499214e-16
     [14,] 0.06478066 1.961559e-16
     [15,] 0.06495951 -9.756855e-17
     [16,] 0.06513885 2.139647e-16
     [17,] 0.06531868 1.273413e-16
     [18,] 0.06549901 2.265762e-16
     [19,] 0.06567984 2.202612e-16
     [20,] 0.06586116 2.793055e-16
     > ## nice printout :
     > print(cbind(n = format(n, drop0trailing = TRUE),
     + stirlerr= format(st.,scientific=FALSE, digits=4),
     + relErr = signif(asNumeric(sfsmisc::relErrV(st.nM, st.)), 4))
     + , quote=FALSE)
     n stirlerr relErr
     [1,] 6.250000e-02 0.67018552 1.145e-16
     [2,] 6.267255e-02 0.66920260 2.992e-16
     [3,] 6.284557e-02 0.66822034 -8.156e-17
     [4,] 6.301908e-02 0.66723875 1.528e-16
     [5,] 6.319306e-02 0.66625781 9.175e-17
     [6,] 6.336752e-02 0.66527753 -7.677e-17
     [7,] 6.354246e-02 0.66429792 5.967e-17
     [8,] 6.371789e-02 0.66331897 4.722e-16
     [9,] 6.389380e-02 0.66234069 1.721e-16
     [10,] 6.407019e-02 0.66136307 3.924e-16
     [11,] 6.424708e-02 0.66038612 -1.778e-16
     [12,] 6.442445e-02 0.65940984 5.391e-16
     [13,] 6.460231e-02 0.65843422 3.499e-16
     [14,] 6.478066e-02 0.65745927 1.962e-16
     [15,] 6.495951e-02 0.65648499 -9.757e-17
     [16,] 6.513885e-02 0.65551138 2.14e-16
     [17,] 6.531868e-02 0.65453844 1.273e-16
     [18,] 6.549901e-02 0.65356617 2.266e-16
     [19,] 6.567984e-02 0.65259457 2.203e-16
     [20,] 6.586116e-02 0.65162365 2.793e-16
     [21,] 6.604299e-02 0.65065339 1.932e-16
     [22,] 6.622532e-02 0.64968382 7.097e-16
     [23,] 6.640815e-02 0.64871491 -1.901e-17
     [24,] 6.659149e-02 0.64774669 -1.838e-16
     [25,] 6.677534e-02 0.64677914 -1.391e-16
     [26,] 6.695969e-02 0.64581226 -1.213e-16
     [27,] 6.714455e-02 0.64484607 2.032e-16
     [28,] 6.732992e-02 0.64388055 -1.909e-16
     [29,] 6.751580e-02 0.64291571 -2.471e-16
     [30,] 6.770220e-02 0.64195156 5.63e-16
     [31,] 6.788911e-02 0.64098808 2.884e-16
     [32,] 6.807653e-02 0.64002528 3.839e-16
     [33,] 6.826448e-02 0.63906317 -1.54e-17
     [34,] 6.845294e-02 0.63810174 -1.624e-16
     [35,] 6.864192e-02 0.63714099 3.531e-16
     [36,] 6.883143e-02 0.63618093 -3.276e-16
     [37,] 6.902145e-02 0.63522155 3.731e-16
     [38,] 6.921201e-02 0.63426286 1.101e-17
     [39,] 6.940309e-02 0.63330486 2.713e-16
     [40,] 6.959469e-02 0.63234754 -3.426e-16
     [41,] 6.978683e-02 0.63139091 4.905e-16
     [42,] 6.997949e-02 0.63043497 4.93e-16
     [43,] 7.017269e-02 0.62947972 1.414e-16
     [44,] 7.036642e-02 0.62852516 -2.749e-16
     [45,] 7.056069e-02 0.62757129 1.261e-16
     [46,] 7.075549e-02 0.62661811 1.128e-16
     [47,] 7.095083e-02 0.62566562 2.61e-16
     [48,] 7.114671e-02 0.62471383 -4.31e-17
     [49,] 7.134313e-02 0.62376273 -1.228e-17
     [50,] 7.154009e-02 0.62281233 -2.894e-16
     [51,] 7.173759e-02 0.62186262 -1.316e-16
     [52,] 7.193564e-02 0.62091361 3.339e-16
     [53,] 7.213424e-02 0.61996529 -1.485e-16
     [54,] 7.233339e-02 0.61901767 -1.836e-16
     [55,] 7.253308e-02 0.61807075 2.161e-16
     [56,] 7.273333e-02 0.61712453 -2.776e-16
     [57,] 7.293413e-02 0.61617901 3.135e-16
     [58,] 7.313549e-02 0.61523418 2.281e-16
     [59,] 7.333740e-02 0.61429006 5.148e-16
     [60,] 7.353986e-02 0.61334664 3.787e-16
     [61,] 7.374289e-02 0.61240393 -4.606e-17
     [62,] 7.394648e-02 0.61146191 -7.132e-17
     [63,] 7.415063e-02 0.61052061 -3.845e-17
     [64,] 7.435534e-02 0.60958000 7.328e-17
     [65,] 7.456062e-02 0.60864010 -4.679e-17
     [66,] 7.476646e-02 0.60770091 2.763e-16
     [67,] 7.497288e-02 0.60676242 2.448e-16
     [68,] 7.517986e-02 0.60582464 -4.094e-16
     [69,] 7.538741e-02 0.60488757 -5.742e-17
     [70,] 7.559554e-02 0.60395121 -8.479e-18
     [71,] 7.580424e-02 0.60301555 -5.085e-17
     [72,] 7.601352e-02 0.60208061 -2.045e-16
     [73,] 7.622338e-02 0.60114638 2.466e-16
     [74,] 7.643381e-02 0.60021286 1.597e-16
     [75,] 7.664483e-02 0.59928005 2.27e-16
     [76,] 7.685643e-02 0.59834796 2.224e-16
     [77,] 7.706861e-02 0.59741658 2.234e-16
     [78,] 7.728138e-02 0.59648591 3.941e-16
     [79,] 7.749474e-02 0.59555596 -2.752e-16
     [80,] 7.770868e-02 0.59462673 2.58e-16
     [81,] 7.792322e-02 0.59369821 -3.991e-16
     [82,] 7.813835e-02 0.59277041 -4.779e-17
     [83,] 7.835407e-02 0.59184333 2.01e-16
     [84,] 7.857039e-02 0.59091696 -1.999e-16
     [85,] 7.878730e-02 0.58999132 2.545e-16
     [86,] 7.900481e-02 0.58906639 2.109e-16
     [87,] 7.922293e-02 0.58814219 2.587e-16
     [88,] 7.944165e-02 0.58721871 1.286e-16
     [89,] 7.966097e-02 0.58629595 4.991e-17
     [90,] 7.988089e-02 0.58537391 5.19e-17
     [91,] 8.010142e-02 0.58445260 1.215e-16
     [92,] 8.032257e-02 0.58353201 2.674e-16
     [93,] 8.054432e-02 0.58261215 4.596e-16
     [94,] 8.076668e-02 0.58169301 2.036e-16
     [95,] 8.098966e-02 0.58077460 -5.517e-17
     [96,] 8.121325e-02 0.57985691 3.031e-16
     [97,] 8.143747e-02 0.57893996 2.247e-16
     [98,] 8.166230e-02 0.57802373 -1.209e-16
     [99,] 8.188775e-02 0.57710823 -3.133e-16
     [100,] 8.211382e-02 0.57619346 7.085e-17
     [101,] 8.234052e-02 0.57527942 5.045e-16
     [102,] 8.256784e-02 0.57436611 4.135e-16
     [103,] 8.279579e-02 0.57345354 4.534e-16
     [104,] 8.302437e-02 0.57254169 -1.347e-16
     [105,] 8.325358e-02 0.57163058 -1.169e-16
     [106,] 8.348343e-02 0.57072021 -7.229e-17
     [107,] 8.371391e-02 0.56981057 -4.296e-17
     [108,] 8.394502e-02 0.56890166 -4.238e-17
     [109,] 8.417677e-02 0.56799349 -2.261e-16
     [110,] 8.440917e-02 0.56708606 -3.301e-16
     [111,] 8.464220e-02 0.56617936 6.372e-17
     [112,] 8.487588e-02 0.56527340 -1.561e-16
     [113,] 8.511020e-02 0.56436818 7.831e-17
     [114,] 8.534517e-02 0.56346370 1.009e-16
     [115,] 8.558079e-02 0.56255996 2.427e-16
     [116,] 8.581706e-02 0.56165696 4.317e-16
     [117,] 8.605398e-02 0.56075470 1.674e-16
     [118,] 8.629156e-02 0.55985319 2.699e-16
     [119,] 8.652979e-02 0.55895241 1.665e-16
     [120,] 8.676868e-02 0.55805238 2.129e-16
     [121,] 8.700823e-02 0.55715310 7.248e-17
     [122,] 8.724844e-02 0.55625456 -8.757e-17
     [123,] 8.748931e-02 0.55535676 3.256e-16
     [124,] 8.773085e-02 0.55445971 5.875e-17
     [125,] 8.797305e-02 0.55356341 -2.152e-16
     [126,] 8.821592e-02 0.55266785 4.052e-16
     [127,] 8.845947e-02 0.55177305 3.825e-16
     [128,] 8.870368e-02 0.55087899 2.095e-16
     [129,] 8.894858e-02 0.54998568 1.539e-16
     [130,] 8.919414e-02 0.54909312 3.122e-17
     [131,] 8.944039e-02 0.54820131 -1.472e-16
     [132,] 8.968731e-02 0.54731025 1.587e-16
     [133,] 8.993492e-02 0.54641994 2.053e-16
     [134,] 9.018321e-02 0.54553039 -2.944e-17
     [135,] 9.043218e-02 0.54464159 2.054e-16
     [136,] 9.068184e-02 0.54375355 6.99e-16
     [137,] 9.093220e-02 0.54286625 -8.244e-17
     [138,] 9.118324e-02 0.54197972 -5.854e-17
     [139,] 9.143498e-02 0.54109394 2.166e-16
     [140,] 9.168741e-02 0.54020891 4.317e-16
     [141,] 9.194053e-02 0.53932465 3.187e-16
     [142,] 9.219436e-02 0.53844114 3.107e-16
     [143,] 9.244889e-02 0.53755839 -2.692e-16
     [144,] 9.270412e-02 0.53667640 2.38e-16
     [145,] 9.296005e-02 0.53579517 5.157e-16
     [146,] 9.321670e-02 0.53491470 2.769e-16
     [147,] 9.347405e-02 0.53403499 -3.111e-16
     [148,] 9.373211e-02 0.53315604 1.749e-16
     [149,] 9.399088e-02 0.53227785 -1.574e-18
     [150,] 9.425037e-02 0.53140043 -4.084e-17
     [151,] 9.451057e-02 0.53052377 2.308e-16
     [152,] 9.477149e-02 0.52964787 5.167e-16
     [153,] 9.503313e-02 0.52877274 4.811e-16
     [154,] 9.529550e-02 0.52789838 5.953e-16
     [155,] 9.555859e-02 0.52702478 -2.364e-16
     [156,] 9.582240e-02 0.52615195 -4.626e-17
     [157,] 9.608695e-02 0.52527988 2.243e-16
     [158,] 9.635222e-02 0.52440859 4.394e-16
     [159,] 9.661823e-02 0.52353806 -1.482e-16
     [160,] 9.688497e-02 0.52266830 -6.535e-17
     [161,] 9.715245e-02 0.52179931 8.086e-17
     [162,] 9.742066e-02 0.52093109 -6.663e-17
     [163,] 9.768962e-02 0.52006365 1.22e-17
     [164,] 9.795932e-02 0.51919697 2.278e-16
     [165,] 9.822976e-02 0.51833107 1.756e-16
     [166,] 9.850095e-02 0.51746594 1.17e-16
     [167,] 9.877289e-02 0.51660158 -3.462e-16
     [168,] 9.904558e-02 0.51573800 -3.34e-19
     [169,] 9.931902e-02 0.51487519 -1.887e-16
     [170,] 9.959322e-02 0.51401316 3.785e-16
     [171,] 9.986817e-02 0.51315190 -1.978e-16
     [172,] 1.001439e-01 0.51229142 9.003e-18
     [173,] 1.004204e-01 0.51143172 3.844e-17
     [174,] 1.006976e-01 0.51057279 5.549e-16
     [175,] 1.009756e-01 0.50971465 1.87e-16
     [176,] 1.012544e-01 0.50885728 8.696e-17
     [177,] 1.015339e-01 0.50800069 -1.527e-17
     [178,] 1.018142e-01 0.50714489 2.44e-16
     [179,] 1.020953e-01 0.50628986 4.6e-16
     [180,] 1.023772e-01 0.50543562 1.701e-16
     [181,] 1.026598e-01 0.50458215 -4.438e-17
     [182,] 1.029432e-01 0.50372947 -1.238e-16
     [183,] 1.032274e-01 0.50287758 -1.12e-16
     [184,] 1.035124e-01 0.50202646 3.054e-16
     [185,] 1.037982e-01 0.50117613 3.548e-17
     [186,] 1.040848e-01 0.50032659 3.856e-16
     [187,] 1.043721e-01 0.49947783 -3.677e-16
     [188,] 1.046603e-01 0.49862986 2.09e-16
     [189,] 1.049492e-01 0.49778268 -7.104e-17
     [190,] 1.052389e-01 0.49693628 -1.113e-16
     [191,] 1.055295e-01 0.49609067 4.999e-17
     [192,] 1.058208e-01 0.49524585 5.613e-17
     [193,] 1.061130e-01 0.49440182 1.585e-16
     [194,] 1.064059e-01 0.49355858 -8.152e-17
     [195,] 1.066997e-01 0.49271612 2.72e-16
     [196,] 1.069943e-01 0.49187446 9.096e-17
     [197,] 1.072897e-01 0.49103359 5.32e-16
     [198,] 1.075859e-01 0.49019352 1.818e-16
     [199,] 1.078829e-01 0.48935423 1.09e-16
     [200,] 1.081807e-01 0.48851574 4.357e-16
     [201,] 1.084794e-01 0.48767804 -2.295e-17
     [202,] 1.087789e-01 0.48684114 -5.037e-16
     [203,] 1.090792e-01 0.48600503 5.266e-16
     [204,] 1.093803e-01 0.48516971 5.865e-17
     [205,] 1.096823e-01 0.48433520 3.658e-16
     [206,] 1.099851e-01 0.48350148 -1.289e-16
     [207,] 1.102887e-01 0.48266855 1.178e-16
     [208,] 1.105932e-01 0.48183643 -1.764e-16
     [209,] 1.108985e-01 0.48100510 4.886e-16
     [210,] 1.112047e-01 0.48017457 -2.404e-16
     [211,] 1.115117e-01 0.47934484 3.576e-16
     [212,] 1.118196e-01 0.47851591 5.779e-16
     [213,] 1.121283e-01 0.47768778 6.892e-16
     [214,] 1.124379e-01 0.47686045 -1.894e-16
     [215,] 1.127483e-01 0.47603392 7.23e-16
     [216,] 1.130595e-01 0.47520820 2.795e-16
     [217,] 1.133717e-01 0.47438328 1.907e-16
     [218,] 1.136847e-01 0.47355916 -9.933e-17
     [219,] 1.139985e-01 0.47273584 3.813e-16
     [220,] 1.143132e-01 0.47191333 6.261e-16
     [221,] 1.146288e-01 0.47109163 4.288e-16
     [222,] 1.149453e-01 0.47027072 3.66e-16
     [223,] 1.152626e-01 0.46945063 3.422e-16
     [224,] 1.155809e-01 0.46863134 2.525e-16
     [225,] 1.158999e-01 0.46781286 2.113e-16
     [226,] 1.162199e-01 0.46699518 -3.694e-16
     [227,] 1.165408e-01 0.46617832 1.036e-16
     [228,] 1.168625e-01 0.46536226 9.654e-17
     [229,] 1.171851e-01 0.46454701 6.554e-16
     [230,] 1.175087e-01 0.46373257 -2.011e-16
     [231,] 1.178331e-01 0.46291894 4.538e-16
     [232,] 1.181584e-01 0.46210612 -1.434e-16
     [233,] 1.184846e-01 0.46129412 3.875e-16
     [234,] 1.188117e-01 0.46048292 1.15e-16
     [235,] 1.191397e-01 0.45967254 1.006e-16
     [236,] 1.194686e-01 0.45886297 -1.077e-17
     [237,] 1.197985e-01 0.45805421 2.434e-16
     [238,] 1.201292e-01 0.45724626 3.035e-16
     [239,] 1.204609e-01 0.45643913 6.026e-17
     [240,] 1.207934e-01 0.45563282 4.367e-16
     [241,] 1.211269e-01 0.45482732 3.222e-16
     [242,] 1.214613e-01 0.45402263 5.206e-16
     [243,] 1.217966e-01 0.45321877 3.503e-17
     [244,] 1.221329e-01 0.45241571 5.672e-16
     [245,] 1.224701e-01 0.45161348 2.24e-16
     [246,] 1.228082e-01 0.45081206 2.418e-16
     [247,] 1.231472e-01 0.45001147 3.687e-17
     [248,] 1.234872e-01 0.44921169 3.093e-16
     [249,] 1.238281e-01 0.44841273 2.265e-16
     [250,] 1.241700e-01 0.44761458 6.154e-17
     [251,] 1.245128e-01 0.44681726 -1.538e-18
     [252,] 1.248565e-01 0.44602076 3.555e-16
     [253,] 1.252012e-01 0.44522509 -4.781e-16
     [254,] 1.255469e-01 0.44443023 2.938e-16
     [255,] 1.258935e-01 0.44363619 3.928e-16
     [256,] 1.262411e-01 0.44284298 -7.038e-17
     [257,] 1.265896e-01 0.44205059 -1.079e-16
     [258,] 1.269391e-01 0.44125903 4.669e-16
     [259,] 1.272895e-01 0.44046828 1.96e-16
     [260,] 1.276409e-01 0.43967837 -4.152e-16
     [261,] 1.279933e-01 0.43888927 -2.424e-16
     [262,] 1.283467e-01 0.43810101 -1.146e-16
     [263,] 1.287010e-01 0.43731356 7.5e-16
     [264,] 1.290563e-01 0.43652695 5.346e-16
     [265,] 1.294126e-01 0.43574116 -1.547e-16
     [266,] 1.297699e-01 0.43495620 -8.764e-17
     [267,] 1.301282e-01 0.43417207 1.528e-17
     [268,] 1.304874e-01 0.43338876 -2.525e-16
     [269,] 1.308477e-01 0.43260629 2.075e-16
     [270,] 1.312089e-01 0.43182464 4.408e-17
     [271,] 1.315712e-01 0.43104382 3.752e-16
     [272,] 1.319344e-01 0.43026383 2.2e-17
     [273,] 1.322986e-01 0.42948468 4.53e-16
     [274,] 1.326639e-01 0.42870635 -4.298e-17
     [275,] 1.330301e-01 0.42792886 1.347e-16
     [276,] 1.333974e-01 0.42715219 6.505e-17
     [277,] 1.337657e-01 0.42637636 3.361e-16
     [278,] 1.341350e-01 0.42560136 4.917e-16
     [279,] 1.345053e-01 0.42482720 5.471e-16
     [280,] 1.348766e-01 0.42405386 2e-16
     [281,] 1.352490e-01 0.42328137 -1.265e-16
     [282,] 1.356224e-01 0.42250970 2.706e-16
     [283,] 1.359968e-01 0.42173887 1.756e-16
     [284,] 1.363723e-01 0.42096888 2.674e-17
     [285,] 1.367488e-01 0.42019972 -1.129e-16
     [286,] 1.371263e-01 0.41943140 4.621e-16
     [287,] 1.375049e-01 0.41866391 -6.214e-16
     [288,] 1.378845e-01 0.41789727 4.654e-16
     [289,] 1.382651e-01 0.41713145 2.825e-16
     [290,] 1.386469e-01 0.41636648 4.879e-16
     [291,] 1.390296e-01 0.41560235 -2.867e-16
     [292,] 1.394135e-01 0.41483905 2.957e-16
     [293,] 1.397984e-01 0.41407659 1.452e-16
     [294,] 1.401843e-01 0.41331497 3.379e-16
     [295,] 1.405713e-01 0.41255419 -5.007e-17
     [296,] 1.409594e-01 0.41179425 2.081e-16
     [297,] 1.413486e-01 0.41103516 -1.087e-16
     [298,] 1.417388e-01 0.41027690 4.484e-16
     [299,] 1.421301e-01 0.40951948 -3.403e-16
     [300,] 1.425225e-01 0.40876291 1.996e-16
     [301,] 1.429160e-01 0.40800718 1.352e-16
     [302,] 1.433105e-01 0.40725229 -5.864e-17
     [303,] 1.437062e-01 0.40649824 -3.298e-16
     [304,] 1.441029e-01 0.40574504 6.348e-16
     [305,] 1.445007e-01 0.40499268 5.75e-16
     [306,] 1.448997e-01 0.40424116 -2.812e-16
     [307,] 1.452997e-01 0.40349049 8.434e-16
     [308,] 1.457009e-01 0.40274066 -5.929e-17
     [309,] 1.461031e-01 0.40199168 -6.133e-16
     [310,] 1.465065e-01 0.40124355 3.929e-16
     [311,] 1.469109e-01 0.40049626 2.636e-16
     [312,] 1.473165e-01 0.39974981 -1.915e-16
     [313,] 1.477232e-01 0.39900422 -4.928e-16
     [314,] 1.481311e-01 0.39825947 5.766e-16
     [315,] 1.485400e-01 0.39751556 1.405e-16
     [316,] 1.489501e-01 0.39677251 1.62e-16
     [317,] 1.493613e-01 0.39603030 -1.391e-16
     [318,] 1.497737e-01 0.39528894 -1.372e-16
     [319,] 1.501872e-01 0.39454843 5.974e-16
     [320,] 1.506018e-01 0.39380877 -2.536e-16
     [321,] 1.510176e-01 0.39306996 -7.015e-17
     [322,] 1.514345e-01 0.39233200 6.183e-16
     [323,] 1.518526e-01 0.39159489 2.035e-16
     [324,] 1.522718e-01 0.39085863 8.765e-17
     [325,] 1.526922e-01 0.39012322 2.5e-17
     [326,] 1.531137e-01 0.38938866 1.398e-16
     [327,] 1.535364e-01 0.38865495 3.011e-16
     [328,] 1.539603e-01 0.38792210 4.87e-16
     [329,] 1.543854e-01 0.38719010 -3.158e-16
     [330,] 1.548116e-01 0.38645895 6.121e-16
     [331,] 1.552390e-01 0.38572865 -2.694e-18
     [332,] 1.556676e-01 0.38499920 5.091e-16
     [333,] 1.560973e-01 0.38427061 4.56e-17
     [334,] 1.565283e-01 0.38354288 -5.676e-17
     [335,] 1.569604e-01 0.38281599 1.124e-17
     [336,] 1.573938e-01 0.38208996 1.746e-16
     [337,] 1.578283e-01 0.38136479 3.868e-16
     [338,] 1.582640e-01 0.38064047 -2.082e-16
     [339,] 1.587009e-01 0.37991701 1.781e-16
     [340,] 1.591391e-01 0.37919440 5.95e-16
     [341,] 1.595784e-01 0.37847265 4.031e-16
     [342,] 1.600190e-01 0.37775175 -4.678e-16
     [343,] 1.604608e-01 0.37703171 1.538e-16
     [344,] 1.609038e-01 0.37631253 8.685e-16
     [345,] 1.613480e-01 0.37559420 1.605e-16
     [346,] 1.617934e-01 0.37487674 4.966e-16
     [347,] 1.622401e-01 0.37416013 -2.161e-16
     [348,] 1.626880e-01 0.37344437 3.402e-16
     [349,] 1.631371e-01 0.37272948 3.393e-16
     [350,] 1.635875e-01 0.37201545 2.058e-16
     [351,] 1.640392e-01 0.37130227 4.784e-16
     [352,] 1.644920e-01 0.37058995 2.528e-16
     [353,] 1.649462e-01 0.36987849 4.744e-17
     [354,] 1.654015e-01 0.36916790 3.851e-16
     [355,] 1.658582e-01 0.36845816 -3.807e-17
     [356,] 1.663161e-01 0.36774928 2.6e-16
     [357,] 1.667752e-01 0.36704126 1.007e-16
     [358,] 1.672357e-01 0.36633410 9.49e-16
     [359,] 1.676974e-01 0.36562781 -5.662e-16
     [360,] 1.681603e-01 0.36492237 1.261e-17
     [361,] 1.686246e-01 0.36421780 -6.64e-16
     [362,] 1.690901e-01 0.36351409 5.684e-16
     [363,] 1.695569e-01 0.36281124 -3.627e-16
     [364,] 1.700250e-01 0.36210925 -2.376e-16
     [365,] 1.704944e-01 0.36140813 -1.826e-16
     [366,] 1.709651e-01 0.36070786 3.78e-17
     [367,] 1.714371e-01 0.36000846 -2.452e-16
     [368,] 1.719104e-01 0.35930993 3.835e-16
     [369,] 1.723850e-01 0.35861226 -2.392e-16
     [370,] 1.728610e-01 0.35791545 -1.732e-16
     [371,] 1.733382e-01 0.35721950 -1.171e-16
     [372,] 1.738167e-01 0.35652442 -9.874e-17
     [373,] 1.742966e-01 0.35583020 4.873e-16
     [374,] 1.747778e-01 0.35513685 1.489e-16
     [375,] 1.752603e-01 0.35444436 -4.92e-16
     [376,] 1.757442e-01 0.35375274 1.133e-15
     [377,] 1.762294e-01 0.35306198 -1.392e-16
     [378,] 1.767159e-01 0.35237209 4.472e-16
     [379,] 1.772038e-01 0.35168307 -2.327e-16
     [380,] 1.776930e-01 0.35099491 2.162e-16
     [381,] 1.781836e-01 0.35030761 2.969e-16
     [382,] 1.786755e-01 0.34962118 1.61e-16
     [383,] 1.791688e-01 0.34893562 -3.762e-17
     [384,] 1.796634e-01 0.34825093 -4.235e-16
     [385,] 1.801594e-01 0.34756710 -1.893e-16
     [386,] 1.806568e-01 0.34688414 -1.445e-16
     [387,] 1.811555e-01 0.34620205 8.137e-16
     [388,] 1.816557e-01 0.34552082 -2.411e-16
     [389,] 1.821572e-01 0.34484046 2.173e-16
     [390,] 1.826601e-01 0.34416097 1.103e-15
     [391,] 1.831644e-01 0.34348235 2.414e-16
     [392,] 1.836700e-01 0.34280459 6.742e-16
     [393,] 1.841771e-01 0.34212771 5.496e-16
     [394,] 1.846856e-01 0.34145169 -2.555e-16
     [395,] 1.851954e-01 0.34077654 9.632e-17
     [396,] 1.857067e-01 0.34010226 5.749e-16
     [397,] 1.862194e-01 0.33942885 4.088e-16
     [398,] 1.867335e-01 0.33875630 -1.127e-17
     [399,] 1.872491e-01 0.33808463 4.186e-16
     [400,] 1.877660e-01 0.33741383 3.921e-17
     [401,] 1.882844e-01 0.33674389 3.782e-16
     [402,] 1.888042e-01 0.33607483 -4.201e-16
     [403,] 1.893254e-01 0.33540663 3.444e-16
     [404,] 1.898481e-01 0.33473931 8.787e-16
     [405,] 1.903723e-01 0.33407285 2.634e-16
     [406,] 1.908978e-01 0.33340727 8.367e-17
     [407,] 1.914249e-01 0.33274256 4.401e-17
     [408,] 1.919533e-01 0.33207871 -1.119e-16
     [409,] 1.924833e-01 0.33141574 2.773e-16
     [410,] 1.930147e-01 0.33075364 2.09e-16
     [411,] 1.935476e-01 0.33009241 3.427e-16
     [412,] 1.940819e-01 0.32943205 2.144e-16
     [413,] 1.946177e-01 0.32877256 3.202e-16
     [414,] 1.951550e-01 0.32811395 6.527e-16
     [415,] 1.956938e-01 0.32745620 -1.398e-16
     [416,] 1.962340e-01 0.32679933 6.37e-16
     [417,] 1.967758e-01 0.32614333 8.43e-16
     [418,] 1.973191e-01 0.32548820 -1.514e-16
     [419,] 1.978638e-01 0.32483394 -1.333e-16
     [420,] 1.984101e-01 0.32418055 5.321e-16
     [421,] 1.989578e-01 0.32352804 4.253e-16
     [422,] 1.995071e-01 0.32287640 1.651e-16
     [423,] 2.000579e-01 0.32222563 -3.774e-16
     [424,] 2.006102e-01 0.32157573 -6.258e-16
     [425,] 2.011641e-01 0.32092671 1.515e-16
     [426,] 2.017194e-01 0.32027855 -1.572e-16
     [427,] 2.022763e-01 0.31963127 5.713e-17
     [428,] 2.028348e-01 0.31898487 -5.183e-17
     [429,] 2.033947e-01 0.31833933 3.126e-16
     [430,] 2.039563e-01 0.31769467 3.642e-17
     [431,] 2.045193e-01 0.31705089 1.917e-18
     [432,] 2.050840e-01 0.31640797 -9.02e-17
     [433,] 2.056502e-01 0.31576593 1.276e-15
     [434,] 2.062179e-01 0.31512476 6.919e-16
     [435,] 2.067872e-01 0.31448446 1.282e-16
     [436,] 2.073581e-01 0.31384504 6.795e-16
     [437,] 2.079306e-01 0.31320649 -2.478e-16
     [438,] 2.085047e-01 0.31256882 6.796e-16
     [439,] 2.090803e-01 0.31193202 3.889e-16
     [440,] 2.096575e-01 0.31129609 3.889e-16
     [441,] 2.102363e-01 0.31066103 1.643e-16
     [442,] 2.108167e-01 0.31002685 2.185e-16
     [443,] 2.113988e-01 0.30939354 -1.441e-16
     [444,] 2.119824e-01 0.30876111 6.382e-16
     [445,] 2.125676e-01 0.30812955 2.436e-16
     [446,] 2.131545e-01 0.30749886 -8.812e-17
     [447,] 2.137429e-01 0.30686905 3.406e-16
     [448,] 2.143330e-01 0.30624011 4.385e-16
     [449,] 2.149248e-01 0.30561205 -1.137e-17
     [450,] 2.155181e-01 0.30498485 3.195e-16
     [451,] 2.161131e-01 0.30435854 5.673e-16
     [452,] 2.167097e-01 0.30373309 1.286e-16
     [453,] 2.173080e-01 0.30310852 2.247e-16
     [454,] 2.179080e-01 0.30248483 4e-16
     [455,] 2.185096e-01 0.30186201 7.926e-17
     [456,] 2.191128e-01 0.30124006 3.789e-16
     [457,] 2.197177e-01 0.30061898 1.416e-16
     [458,] 2.203243e-01 0.29999878 7.557e-16
     [459,] 2.209326e-01 0.29937946 1.39e-16
     [460,] 2.215425e-01 0.29876100 1.53e-16
     [461,] 2.221542e-01 0.29814343 9.033e-16
     [462,] 2.227675e-01 0.29752672 1.182e-15
     [463,] 2.233825e-01 0.29691089 8.09e-16
     [464,] 2.239992e-01 0.29629593 4.997e-16
     [465,] 2.246176e-01 0.29568185 3.541e-16
     [466,] 2.252377e-01 0.29506864 6.138e-16
     [467,] 2.258596e-01 0.29445630 1.879e-16
     [468,] 2.264831e-01 0.29384484 -3.697e-16
     [469,] 2.271084e-01 0.29323425 -8.713e-17
     [470,] 2.277354e-01 0.29262454 7.135e-17
     [471,] 2.283641e-01 0.29201570 7.4e-16
     [472,] 2.289946e-01 0.29140773 5.87e-16
     [473,] 2.296268e-01 0.29080064 5.889e-16
     [474,] 2.302607e-01 0.29019442 4.84e-16
     [475,] 2.308964e-01 0.28958907 7.977e-16
     [476,] 2.315339e-01 0.28898459 2.613e-16
     [477,] 2.321731e-01 0.28838099 -1.952e-16
     [478,] 2.328140e-01 0.28777827 6.695e-16
     [479,] 2.334568e-01 0.28717641 4.475e-16
     [480,] 2.341013e-01 0.28657543 -4.445e-16
     [481,] 2.347476e-01 0.28597532 2.102e-16
     [482,] 2.353957e-01 0.28537609 4.936e-16
     [483,] 2.360456e-01 0.28477773 -1.496e-16
     [484,] 2.366972e-01 0.28418024 -4.069e-17
     [485,] 2.373507e-01 0.28358362 7.943e-16
     [486,] 2.380060e-01 0.28298788 2.412e-16
     [487,] 2.386631e-01 0.28239301 1.201e-16
     [488,] 2.393220e-01 0.28179901 2.96e-16
     [489,] 2.399827e-01 0.28120588 4.147e-16
     [490,] 2.406452e-01 0.28061363 5.42e-17
     [491,] 2.413096e-01 0.28002225 -7.078e-17
     [492,] 2.419758e-01 0.27943174 -1.084e-16
     [493,] 2.426438e-01 0.27884210 8.852e-16
     [494,] 2.433137e-01 0.27825334 -2.045e-16
     [495,] 2.439854e-01 0.27766545 3.86e-16
     [496,] 2.446590e-01 0.27707842 4.846e-16
     [497,] 2.453345e-01 0.27649227 -1.418e-16
     [498,] 2.460118e-01 0.27590700 1.066e-16
     [499,] 2.466910e-01 0.27532259 8.576e-16
     [500,] 2.473720e-01 0.27473905 5.594e-16
     [501,] 2.480550e-01 0.27415639 4.579e-16
     [502,] 2.487398e-01 0.27357459 7.856e-16
     [503,] 2.494265e-01 0.27299367 8.994e-17
     [504,] 2.501151e-01 0.27241362 -4.785e-16
     [505,] 2.508056e-01 0.27183444 1.548e-15
     [506,] 2.514980e-01 0.27125613 6.362e-16
     [507,] 2.521924e-01 0.27067869 -7.283e-17
     [508,] 2.528886e-01 0.27010212 1.435e-15
     [509,] 2.535868e-01 0.26952641 5.177e-17
     [510,] 2.542869e-01 0.26895158 -2.401e-16
     [511,] 2.549889e-01 0.26837762 7.813e-16
     [512,] 2.556929e-01 0.26780453 5.225e-16
     [513,] 2.563988e-01 0.26723231 3.938e-17
     [514,] 2.571066e-01 0.26666096 -1.036e-15
     [515,] 2.578164e-01 0.26609047 4.764e-17
     [516,] 2.585282e-01 0.26552086 -9.354e-17
     [517,] 2.592419e-01 0.26495211 2.928e-16
     [518,] 2.599577e-01 0.26438424 3.706e-16
     [519,] 2.606753e-01 0.26381723 3.577e-16
     [520,] 2.613950e-01 0.26325109 -6.661e-16
     [521,] 2.621167e-01 0.26268581 9.624e-16
     [522,] 2.628403e-01 0.26212141 -3.302e-16
     [523,] 2.635659e-01 0.26155787 2.513e-16
     [524,] 2.642936e-01 0.26099520 -1.423e-17
     [525,] 2.650232e-01 0.26043340 1.062e-15
     [526,] 2.657549e-01 0.25987246 3.939e-16
     [527,] 2.664886e-01 0.25931240 6.104e-16
     [528,] 2.672243e-01 0.25875319 3.942e-16
     [529,] 2.679621e-01 0.25819486 4.994e-16
     [530,] 2.687018e-01 0.25763739 4.463e-16
     [531,] 2.694437e-01 0.25708079 -6.053e-17
     [532,] 2.701875e-01 0.25652505 1.186e-16
     [533,] 2.709335e-01 0.25597018 -6.001e-16
     [534,] 2.716814e-01 0.25541617 7.076e-16
     [535,] 2.724315e-01 0.25486303 -1.442e-16
     [536,] 2.731836e-01 0.25431075 -2.268e-16
     [537,] 2.739378e-01 0.25375934 -3.534e-16
     [538,] 2.746941e-01 0.25320880 1.746e-16
     [539,] 2.754525e-01 0.25265911 3.166e-16
     [540,] 2.762129e-01 0.25211030 4.663e-16
     [541,] 2.769755e-01 0.25156234 1.811e-16
     [542,] 2.777402e-01 0.25101525 -4.067e-17
     [543,] 2.785069e-01 0.25046902 3.514e-16
     [544,] 2.792758e-01 0.24992366 -3.324e-16
     [545,] 2.800468e-01 0.24937915 2.696e-16
     [546,] 2.808200e-01 0.24883552 -4.75e-16
     [547,] 2.815953e-01 0.24829274 1.789e-16
     [548,] 2.823727e-01 0.24775082 6.286e-16
     [549,] 2.831523e-01 0.24720977 4.175e-16
     [550,] 2.839340e-01 0.24666958 -3.397e-16
     [551,] 2.847178e-01 0.24613025 1.774e-16
     [552,] 2.855039e-01 0.24559178 2.747e-16
     [553,] 2.862921e-01 0.24505417 7.449e-16
     [554,] 2.870825e-01 0.24451742 2.67e-16
     [555,] 2.878751e-01 0.24398153 7.5e-16
     [556,] 2.886698e-01 0.24344650 3.373e-16
     [557,] 2.894668e-01 0.24291233 -1.38e-16
     [558,] 2.902659e-01 0.24237902 -3.26e-16
     [559,] 2.910673e-01 0.24184657 -2.38e-16
     [560,] 2.918708e-01 0.24131498 8.787e-16
     [561,] 2.926766e-01 0.24078424 9.02e-17
     [562,] 2.934846e-01 0.24025437 1.296e-15
     [563,] 2.942949e-01 0.23972535 9.891e-16
     [564,] 2.951074e-01 0.23919719 3.466e-16
     [565,] 2.959221e-01 0.23866988 3.719e-16
     [566,] 2.967391e-01 0.23814344 -1.136e-16
     [567,] 2.975583e-01 0.23761785 2.108e-16
     [568,] 2.983798e-01 0.23709311 5.577e-16
     [569,] 2.992035e-01 0.23656923 -5.229e-17
     [570,] 3.000296e-01 0.23604621 -1.045e-16
     [571,] 3.008579e-01 0.23552404 9.542e-16
     [572,] 3.016885e-01 0.23500273 3.436e-17
     [573,] 3.025214e-01 0.23448227 2.588e-16
     [574,] 3.033566e-01 0.23396267 4.935e-16
     [575,] 3.041941e-01 0.23344392 -1.881e-16
     [576,] 3.050339e-01 0.23292602 -3.572e-16
     [577,] 3.058760e-01 0.23240898 8.73e-16
     [578,] 3.067205e-01 0.23189279 -2.869e-16
     [579,] 3.075673e-01 0.23137745 -5.663e-16
     [580,] 3.084164e-01 0.23086297 4.681e-17
     [581,] 3.092678e-01 0.23034933 9.569e-16
     [582,] 3.101217e-01 0.22983655 9.478e-16
     [583,] 3.109778e-01 0.22932462 1.505e-15
     [584,] 3.118364e-01 0.22881354 -1.057e-17
     [585,] 3.126973e-01 0.22830331 7.623e-17
     [586,] 3.135606e-01 0.22779393 7.99e-16
     [587,] 3.144262e-01 0.22728539 1.723e-16
     [588,] 3.152943e-01 0.22677771 2.438e-16
     [589,] 3.161648e-01 0.22627088 7.699e-16
     [590,] 3.170376e-01 0.22576490 4.23e-16
     [591,] 3.179129e-01 0.22525976 4.447e-16
     [592,] 3.187906e-01 0.22475547 5.924e-16
     [593,] 3.196707e-01 0.22425203 8.841e-16
     [594,] 3.205532e-01 0.22374944 -1.705e-16
     [595,] 3.214382e-01 0.22324769 4.861e-16
     [596,] 3.223256e-01 0.22274679 1e-16
     [597,] 3.232155e-01 0.22224673 -2.422e-16
     [598,] 3.241078e-01 0.22174752 -4.068e-16
     [599,] 3.250026e-01 0.22124915 1.245e-16
     [600,] 3.258998e-01 0.22075163 1.647e-16
     [601,] 3.267996e-01 0.22025495 3.722e-16
     [602,] 3.277018e-01 0.21975912 -2.339e-16
     [603,] 3.286065e-01 0.21926413 -1.228e-16
     [604,] 3.295137e-01 0.21876998 -4.039e-16
     [605,] 3.304234e-01 0.21827668 -9.515e-17
     [606,] 3.313356e-01 0.21778421 -6.885e-16
     [607,] 3.322504e-01 0.21729259 2.877e-16
     [608,] 3.331677e-01 0.21680181 2.895e-16
     [609,] 3.340875e-01 0.21631187 4.429e-16
     [610,] 3.350098e-01 0.21582277 8.415e-17
     [611,] 3.359347e-01 0.21533451 7.71e-16
     [612,] 3.368621e-01 0.21484709 5.687e-16
     [613,] 3.377921e-01 0.21436051 7.473e-16
     [614,] 3.387247e-01 0.21387477 1.355e-15
     [615,] 3.396598e-01 0.21338986 2.508e-16
     [616,] 3.405975e-01 0.21290579 2.716e-16
     [617,] 3.415379e-01 0.21242256 5.832e-16
     [618,] 3.424808e-01 0.21194017 -3.492e-16
     [619,] 3.434263e-01 0.21145861 -4.253e-17
     [620,] 3.443744e-01 0.21097789 6.28e-16
     [621,] 3.453251e-01 0.21049800 -4.138e-16
     [622,] 3.462785e-01 0.21001895 4.599e-16
     [623,] 3.472345e-01 0.20954073 -3.175e-16
     [624,] 3.481931e-01 0.20906335 3.514e-16
     [625,] 3.491544e-01 0.20858680 8.275e-16
     [626,] 3.501184e-01 0.20811108 9.242e-17
     [627,] 3.510849e-01 0.20763620 -1.957e-16
     [628,] 3.520542e-01 0.20716214 3.219e-16
     [629,] 3.530262e-01 0.20668892 4.149e-16
     [630,] 3.540008e-01 0.20621653 -3.827e-16
     [631,] 3.549781e-01 0.20574497 6.978e-16
     [632,] 3.559581e-01 0.20527424 3.855e-17
     [633,] 3.569408e-01 0.20480434 -3.221e-16
     [634,] 3.579263e-01 0.20433527 -6.195e-16
     [635,] 3.589144e-01 0.20386702 1.453e-16
     [636,] 3.599053e-01 0.20339961 -9.224e-17
     [637,] 3.608989e-01 0.20293302 1.127e-15
     [638,] 3.618953e-01 0.20246726 3.578e-16
     [639,] 3.628944e-01 0.20200232 1.688e-15
     [640,] 3.638962e-01 0.20153821 1.748e-16
     [641,] 3.649009e-01 0.20107493 1.237e-15
     [642,] 3.659083e-01 0.20061247 5.74e-16
     [643,] 3.669185e-01 0.20015083 1.306e-15
     [644,] 3.679315e-01 0.19969002 8.148e-17
     [645,] 3.689472e-01 0.19923003 3.599e-16
     [646,] 3.699658e-01 0.19877087 4.61e-16
     [647,] 3.709872e-01 0.19831252 1.028e-15
     [648,] 3.720114e-01 0.19785500 2.223e-16
     [649,] 3.730384e-01 0.19739830 7.637e-16
     [650,] 3.740683e-01 0.19694242 1.09e-15
     [651,] 3.751010e-01 0.19648736 2.742e-16
     [652,] 3.761366e-01 0.19603312 1.643e-16
     [653,] 3.771750e-01 0.19557970 6.804e-16
     [654,] 3.782163e-01 0.19512709 2.871e-16
     [655,] 3.792605e-01 0.19467531 4.441e-16
     [656,] 3.803076e-01 0.19422434 7.984e-16
     [657,] 3.813575e-01 0.19377419 -4.326e-16
     [658,] 3.824103e-01 0.19332485 6.109e-16
     [659,] 3.834661e-01 0.19287633 -2.758e-16
     [660,] 3.845247e-01 0.19242862 2.016e-16
     [661,] 3.855863e-01 0.19198173 1.544e-15
     [662,] 3.866508e-01 0.19153566 2.691e-16
     [663,] 3.877183e-01 0.19109039 2.384e-16
     [664,] 3.887887e-01 0.19064594 1.906e-16
     [665,] 3.898621e-01 0.19020230 3.664e-16
     [666,] 3.909384e-01 0.18975947 -2.23e-16
     [667,] 3.920177e-01 0.18931745 1.4e-16
     [668,] 3.930999e-01 0.18887625 1.568e-17
     [669,] 3.941852e-01 0.18843585 1.038e-15
     [670,] 3.952735e-01 0.18799626 5.419e-16
     [671,] 3.963647e-01 0.18755748 -4.893e-16
     [672,] 3.974590e-01 0.18711951 8.025e-16
     [673,] 3.985563e-01 0.18668234 1.196e-15
     [674,] 3.996566e-01 0.18624598 3.877e-16
     [675,] 4.007600e-01 0.18581043 1.152e-16
     [676,] 4.018664e-01 0.18537568 2.73e-16
     [677,] 4.029758e-01 0.18494174 4.137e-16
     [678,] 4.040884e-01 0.18450860 3.267e-16
     [679,] 4.052040e-01 0.18407627 6.401e-16
     [680,] 4.063226e-01 0.18364474 4.391e-16
     [681,] 4.074444e-01 0.18321401 1.79e-16
     [682,] 4.085693e-01 0.18278408 9.319e-16
     [683,] 4.096972e-01 0.18235495 9.198e-16
     [684,] 4.108283e-01 0.18192663 8.313e-16
     [685,] 4.119625e-01 0.18149910 1.77e-15
     [686,] 4.130998e-01 0.18107237 7.254e-16
     [687,] 4.142403e-01 0.18064645 6.205e-16
     [688,] 4.153839e-01 0.18022132 -2.132e-17
     [689,] 4.165307e-01 0.17979698 3.195e-16
     [690,] 4.176807e-01 0.17937345 7.002e-16
     [691,] 4.188338e-01 0.17895070 4.086e-16
     [692,] 4.199901e-01 0.17852876 9.095e-16
     [693,] 4.211496e-01 0.17810761 1.116e-15
     [694,] 4.223123e-01 0.17768725 2.085e-16
     [695,] 4.234782e-01 0.17726769 9.39e-16
     [696,] 4.246473e-01 0.17684892 -2.568e-16
     [697,] 4.258197e-01 0.17643094 1.543e-16
     [698,] 4.269953e-01 0.17601375 -6.601e-16
     [699,] 4.281741e-01 0.17559735 9.929e-16
     [700,] 4.293562e-01 0.17518175 1.704e-16
     [701,] 4.305415e-01 0.17476693 6.051e-16
     [702,] 4.317302e-01 0.17435290 -6.362e-16
     [703,] 4.329221e-01 0.17393966 -6.512e-16
     [704,] 4.341173e-01 0.17352721 4.46e-17
     [705,] 4.353158e-01 0.17311554 1.331e-15
     [706,] 4.365176e-01 0.17270466 2.99e-16
     [707,] 4.377227e-01 0.17229456 6.016e-16
     [708,] 4.389312e-01 0.17188525 -1.596e-16
     [709,] 4.401429e-01 0.17147672 6.694e-16
     [710,] 4.413581e-01 0.17106898 1.1e-15
     [711,] 4.425766e-01 0.17066202 -2.118e-16
     [712,] 4.437984e-01 0.17025584 -3.483e-17
     [713,] 4.450236e-01 0.16985044 -5.374e-16
     [714,] 4.462523e-01 0.16944582 7.671e-16
     [715,] 4.474843e-01 0.16904198 -4.856e-16
     [716,] 4.487197e-01 0.16863892 5.618e-16
     [717,] 4.499585e-01 0.16823664 3.876e-16
     [718,] 4.512007e-01 0.16783514 8.48e-16
     [719,] 4.524464e-01 0.16743441 3.39e-16
     [720,] 4.536955e-01 0.16703446 2.166e-16
     [721,] 4.549480e-01 0.16663528 -3.914e-16
     [722,] 4.562040e-01 0.16623688 -6.427e-16
     [723,] 4.574635e-01 0.16583926 -2.234e-16
     [724,] 4.587264e-01 0.16544240 6.441e-16
     [725,] 4.599929e-01 0.16504632 -2.272e-16
     [726,] 4.612628e-01 0.16465101 5.76e-16
     [727,] 4.625363e-01 0.16425648 3.1e-17
     [728,] 4.638132e-01 0.16386271 1.346e-15
     [729,] 4.650937e-01 0.16346971 4.483e-16
     [730,] 4.663777e-01 0.16307748 7.124e-16
     [731,] 4.676653e-01 0.16268602 -1.105e-15
     [732,] 4.689564e-01 0.16229533 5.87e-16
     [733,] 4.702511e-01 0.16190540 1.285e-15
     [734,] 4.715493e-01 0.16151624 1.066e-15
     [735,] 4.728512e-01 0.16112784 7.765e-16
     [736,] 4.741566e-01 0.16074021 3.743e-16
     [737,] 4.754656e-01 0.16035334 1.656e-15
     [738,] 4.767783e-01 0.15996724 1.837e-15
     [739,] 4.780946e-01 0.15958190 4.348e-16
     [740,] 4.794145e-01 0.15919732 -5.029e-16
     [741,] 4.807380e-01 0.15881349 2.089e-16
     [742,] 4.820652e-01 0.15843043 1.486e-15
     [743,] 4.833961e-01 0.15804813 1.621e-15
     [744,] 4.847307e-01 0.15766659 -4.078e-16
     [745,] 4.860689e-01 0.15728580 4.823e-16
     [746,] 4.874108e-01 0.15690577 1.107e-15
     [747,] 4.887565e-01 0.15652650 3.2e-16
     [748,] 4.901058e-01 0.15614798 3.601e-16
     [749,] 4.914589e-01 0.15577022 -3.617e-16
     [750,] 4.928157e-01 0.15539321 6.579e-16
     [751,] 4.941762e-01 0.15501696 -1.928e-16
     [752,] 4.955405e-01 0.15464145 -6.137e-16
     [753,] 4.969086e-01 0.15426670 -2.528e-16
     [754,] 4.982805e-01 0.15389270 7.218e-16
     [755,] 4.996561e-01 0.15351944 9.735e-16
     [756,] 5.010355e-01 0.15314694 5.77e-16
     [757,] 5.024188e-01 0.15277519 1.436e-15
     [758,] 5.038058e-01 0.15240418 6.609e-16
     [759,] 5.051967e-01 0.15203392 7.387e-16
     [760,] 5.065915e-01 0.15166440 1.634e-15
     [761,] 5.079900e-01 0.15129563 6.092e-17
     [762,] 5.093925e-01 0.15092761 1.728e-15
     [763,] 5.107988e-01 0.15056032 9.504e-16
     [764,] 5.122090e-01 0.15019378 2.039e-15
     [765,] 5.136231e-01 0.14982799 9.802e-16
     [766,] 5.150411e-01 0.14946293 9.703e-16
     [767,] 5.164630e-01 0.14909861 7.196e-17
     [768,] 5.178888e-01 0.14873504 6.345e-16
     [769,] 5.193186e-01 0.14837220 -6.527e-16
     [770,] 5.207523e-01 0.14801010 1.124e-16
     [771,] 5.221900e-01 0.14764873 2.317e-16
     [772,] 5.236317e-01 0.14728811 1.119e-15
     [773,] 5.250773e-01 0.14692821 -6.687e-17
     [774,] 5.265269e-01 0.14656906 4.354e-16
     [775,] 5.279805e-01 0.14621063 1.267e-15
     [776,] 5.294382e-01 0.14585294 1.592e-15
     [777,] 5.308998e-01 0.14549598 5.543e-16
     [778,] 5.323655e-01 0.14513975 4.04e-17
     [779,] 5.338353e-01 0.14478426 -3.664e-16
     [780,] 5.353090e-01 0.14442949 1.71e-15
     [781,] 5.367869e-01 0.14407545 -6.794e-17
     [782,] 5.382689e-01 0.14372214 1.829e-16
     [783,] 5.397549e-01 0.14336955 -1.092e-16
     [784,] 5.412450e-01 0.14301770 -1.487e-15
     [785,] 5.427393e-01 0.14266656 2.16e-15
     [786,] 5.442377e-01 0.14231615 1.419e-15
     [787,] 5.457402e-01 0.14196647 -4.189e-16
     [788,] 5.472468e-01 0.14161751 2.693e-16
     [789,] 5.487577e-01 0.14126927 -4.535e-16
     [790,] 5.502727e-01 0.14092175 -4.792e-16
     [791,] 5.517918e-01 0.14057495 9.115e-16
     [792,] 5.533152e-01 0.14022887 -4.351e-16
     [793,] 5.548428e-01 0.13988351 1.319e-15
     [794,] 5.563746e-01 0.13953887 1.042e-15
     [795,] 5.579106e-01 0.13919495 5.011e-16
     [796,] 5.594509e-01 0.13885174 1.195e-15
     [797,] 5.609954e-01 0.13850924 1.153e-15
     [798,] 5.625442e-01 0.13816746 -2.329e-16
     [799,] 5.640972e-01 0.13782640 3.928e-16
     [800,] 5.656546e-01 0.13748604 4.549e-16
     [801,] 5.672162e-01 0.13714640 1.236e-15
     [802,] 5.687822e-01 0.13680747 1.234e-15
     [803,] 5.703524e-01 0.13646925 1.572e-15
     [804,] 5.719271e-01 0.13613174 1.554e-15
     [805,] 5.735060e-01 0.13579493 5.583e-16
     [806,] 5.750893e-01 0.13545884 6.815e-16
     [807,] 5.766770e-01 0.13512345 1.472e-15
     [808,] 5.782691e-01 0.13478876 4.409e-16
     [809,] 5.798656e-01 0.13445478 -1.502e-16
     [810,] 5.814664e-01 0.13412151 -4.711e-16
     [811,] 5.830717e-01 0.13378893 4.407e-16
     [812,] 5.846815e-01 0.13345706 1.319e-15
     [813,] 5.862956e-01 0.13312589 -1.725e-15
     [814,] 5.879143e-01 0.13279543 6.336e-16
     [815,] 5.895374e-01 0.13246566 9.695e-16
     [816,] 5.911649e-01 0.13213658 -6.939e-16
     [817,] 5.927970e-01 0.13180821 7.629e-16
     [818,] 5.944336e-01 0.13148054 3.622e-16
     [819,] 5.960747e-01 0.13115355 -7.108e-16
     [820,] 5.977203e-01 0.13082727 7.263e-16
     [821,] 5.993705e-01 0.13050168 3.85e-16
     [822,] 6.010252e-01 0.13017678 6.169e-16
     [823,] 6.026845e-01 0.12985257 6.993e-16
     [824,] 6.043484e-01 0.12952906 3.357e-16
     [825,] 6.060168e-01 0.12920624 8.185e-16
     [826,] 6.076899e-01 0.12888410 8.543e-16
     [827,] 6.093676e-01 0.12856266 -7.156e-16
     [828,] 6.110499e-01 0.12824190 1.602e-15
     [829,] 6.127369e-01 0.12792183 4.17e-16
     [830,] 6.144285e-01 0.12760244 6.532e-16
     [831,] 6.161248e-01 0.12728374 5.228e-17
     [832,] 6.178258e-01 0.12696573 -6.806e-16
     [833,] 6.195315e-01 0.12664840 -9.111e-16
     [834,] 6.212419e-01 0.12633175 1.16e-15
     [835,] 6.229570e-01 0.12601578 1.147e-15
     [836,] 6.246768e-01 0.12570049 9.726e-16
     [837,] 6.264014e-01 0.12538588 -8.073e-16
     [838,] 6.281308e-01 0.12507195 -2.19e-16
     [839,] 6.298649e-01 0.12475870 1.178e-15
     [840,] 6.316038e-01 0.12444613 6.227e-16
     [841,] 6.333475e-01 0.12413423 1.353e-15
     [842,] 6.350960e-01 0.12382301 2.675e-15
     [843,] 6.368494e-01 0.12351246 1.518e-15
     [844,] 6.386076e-01 0.12320258 1.941e-15
     [845,] 6.403706e-01 0.12289338 1.124e-15
     [846,] 6.421386e-01 0.12258485 1.621e-15
     [847,] 6.439114e-01 0.12227698 -8.506e-16
     [848,] 6.456890e-01 0.12196979 -5.725e-16
     [849,] 6.474716e-01 0.12166327 9.603e-16
     [850,] 6.492592e-01 0.12135741 1.704e-15
     [851,] 6.510516e-01 0.12105222 1.417e-15
     [852,] 6.528490e-01 0.12074770 -7.853e-16
     [853,] 6.546514e-01 0.12044384 2.015e-15
     [854,] 6.564587e-01 0.12014065 9.72e-16
     [855,] 6.582711e-01 0.11983812 -3.596e-16
     [856,] 6.600884e-01 0.11953625 3.496e-16
     [857,] 6.619108e-01 0.11923504 3.423e-16
     [858,] 6.637381e-01 0.11893449 -2.594e-16
     [859,] 6.655706e-01 0.11863460 1.61e-16
     [860,] 6.674081e-01 0.11833537 -8.031e-17
     [861,] 6.692506e-01 0.11803680 8.051e-16
     [862,] 6.710983e-01 0.11773888 2.753e-16
     [863,] 6.729510e-01 0.11744162 1.317e-15
     [864,] 6.748089e-01 0.11714502 6.385e-16
     [865,] 6.766719e-01 0.11684906 -5.157e-16
     [866,] 6.785400e-01 0.11655376 -1.343e-15
     [867,] 6.804133e-01 0.11625912 -5.979e-16
     [868,] 6.822918e-01 0.11596512 8.118e-17
     [869,] 6.841754e-01 0.11567177 -3.39e-16
     [870,] 6.860643e-01 0.11537907 -6.429e-16
     [871,] 6.879583e-01 0.11508702 5.342e-16
     [872,] 6.898576e-01 0.11479562 1.422e-15
     [873,] 6.917622e-01 0.11450486 1.12e-16
     [874,] 6.936720e-01 0.11421475 6.532e-16
     [875,] 6.955870e-01 0.11392528 1.307e-15
     [876,] 6.975074e-01 0.11363646 5.827e-16
     [877,] 6.994331e-01 0.11334827 6.975e-16
     [878,] 7.013640e-01 0.11306073 5.971e-16
     [879,] 7.033003e-01 0.11277383 4.566e-16
     [880,] 7.052420e-01 0.11248757 -1.131e-16
     [881,] 7.071890e-01 0.11220195 1.748e-15
     [882,] 7.091414e-01 0.11191696 7.273e-16
     [883,] 7.110992e-01 0.11163261 -8.449e-16
     [884,] 7.130623e-01 0.11134890 1.113e-15
     [885,] 7.150309e-01 0.11106582 7.061e-17
     [886,] 7.170050e-01 0.11078338 4.651e-16
     [887,] 7.189845e-01 0.11050157 -4.119e-17
     [888,] 7.209694e-01 0.11022039 2.455e-16
     [889,] 7.229599e-01 0.10993984 1.39e-15
     [890,] 7.249558e-01 0.10965992 1.777e-15
     [891,] 7.269572e-01 0.10938063 1.484e-15
     [892,] 7.289642e-01 0.10910196 1.851e-15
     [893,] 7.309767e-01 0.10882393 1.05e-15
     [894,] 7.329947e-01 0.10854652 4.347e-17
     [895,] 7.350184e-01 0.10826973 7.729e-16
     [896,] 7.370476e-01 0.10799357 1.093e-15
     [897,] 7.390824e-01 0.10771804 -4.926e-16
     [898,] 7.411229e-01 0.10744312 -5.177e-16
     [899,] 7.431689e-01 0.10716883 3.748e-16
     [900,] 7.452206e-01 0.10689515 2.729e-15
     [901,] 7.472780e-01 0.10662210 -2.314e-17
     [902,] 7.493411e-01 0.10634966 -1.073e-15
     [903,] 7.514099e-01 0.10607784 2.55e-15
     [904,] 7.534843e-01 0.10580664 1.136e-15
     [905,] 7.555645e-01 0.10553605 7.109e-16
     [906,] 7.576505e-01 0.10526608 -1.734e-15
     [907,] 7.597422e-01 0.10499672 1.678e-15
     [908,] 7.618396e-01 0.10472797 8.407e-16
     [909,] 7.639429e-01 0.10445983 5.174e-16
     [910,] 7.660520e-01 0.10419231 9.797e-17
     [911,] 7.681669e-01 0.10392539 1.335e-15
     [912,] 7.702876e-01 0.10365909 -1.114e-15
     [913,] 7.724142e-01 0.10339339 7.46e-16
     [914,] 7.745466e-01 0.10312829 -1.584e-17
     [915,] 7.766850e-01 0.10286381 2.267e-15
     [916,] 7.788292e-01 0.10259992 1.301e-15
     [917,] 7.809794e-01 0.10233664 3.786e-16
     [918,] 7.831355e-01 0.10207397 -5.462e-17
     [919,] 7.852976e-01 0.10181189 2.451e-15
     [920,] 7.874656e-01 0.10155042 -1.668e-15
     [921,] 7.896396e-01 0.10128954 8.239e-16
     [922,] 7.918196e-01 0.10102927 2.523e-16
     [923,] 7.940057e-01 0.10076959 -4.797e-16
     [924,] 7.961977e-01 0.10051051 2.049e-15
     [925,] 7.983958e-01 0.10025203 1.591e-16
     [926,] 8.006000e-01 0.09999414 1.809e-15
     [927,] 8.028103e-01 0.09973684 1.544e-15
     [928,] 8.050267e-01 0.09948014 -1.703e-16
     [929,] 8.072492e-01 0.09922402 1.579e-16
     [930,] 8.094778e-01 0.09896850 9.688e-16
     [931,] 8.117126e-01 0.09871357 -1.433e-16
     [932,] 8.139535e-01 0.09845923 -4.285e-16
     [933,] 8.162007e-01 0.09820548 9.372e-16
     [934,] 8.184540e-01 0.09795231 2.841e-15
     [935,] 8.207136e-01 0.09769973 -5.595e-16
     [936,] 8.229794e-01 0.09744774 1.142e-15
     [937,] 8.252515e-01 0.09719633 4.394e-16
     [938,] 8.275298e-01 0.09694550 -3.676e-17
     [939,] 8.298144e-01 0.09669525 1.424e-15
     [940,] 8.321053e-01 0.09644559 -6.164e-16
     [941,] 8.344026e-01 0.09619650 1.088e-15
     [942,] 8.367062e-01 0.09594800 1.513e-15
     [943,] 8.390161e-01 0.09570007 1.316e-15
     [944,] 8.413325e-01 0.09545272 -7.637e-16
     [945,] 8.436552e-01 0.09520595 -1.53e-16
     [946,] 8.459843e-01 0.09495975 1.93e-16
     [947,] 8.483199e-01 0.09471413 1.525e-16
     [948,] 8.506619e-01 0.09446908 3.843e-16
     [949,] 8.530104e-01 0.09422460 -1.242e-15
     [950,] 8.553654e-01 0.09398069 4.566e-16
     [951,] 8.577268e-01 0.09373735 6.964e-16
     [952,] 8.600948e-01 0.09349459 1.828e-15
     [953,] 8.624694e-01 0.09325239 2.908e-17
     [954,] 8.648504e-01 0.09301076 1.052e-16
     [955,] 8.672381e-01 0.09276969 1.151e-15
     [956,] 8.696323e-01 0.09252919 1.788e-15
     [957,] 8.720332e-01 0.09228926 -2.313e-16
     [958,] 8.744407e-01 0.09204988 1.27e-15
     [959,] 8.768548e-01 0.09181107 1.575e-15
     [960,] 8.792756e-01 0.09157283 1.276e-15
     [961,] 8.817031e-01 0.09133514 -4.516e-16
     [962,] 8.841373e-01 0.09109801 -4.459e-16
     [963,] 8.865782e-01 0.09086144 1.391e-15
     [964,] 8.890258e-01 0.09062543 8.464e-16
     [965,] 8.914802e-01 0.09038997 -1.671e-17
     [966,] 8.939414e-01 0.09015508 1.185e-15
     [967,] 8.964093e-01 0.08992073 1.511e-15
     [968,] 8.988841e-01 0.08968694 1.295e-15
     [969,] 9.013657e-01 0.08945370 -5.48e-16
     [970,] 9.038542e-01 0.08922101 5.017e-16
     [971,] 9.063495e-01 0.08898888 2.048e-15
     [972,] 9.088518e-01 0.08875729 -1.298e-16
     [973,] 9.113609e-01 0.08852625 1.269e-15
     [974,] 9.138770e-01 0.08829576 1.076e-15
     [975,] 9.164000e-01 0.08806582 1.928e-15
     [976,] 9.189299e-01 0.08783642 1.176e-15
     [977,] 9.214669e-01 0.08760757 -1.282e-16
     [978,] 9.240108e-01 0.08737926 -8.364e-16
     [979,] 9.265618e-01 0.08715149 1.794e-16
     [980,] 9.291198e-01 0.08692426 2.214e-15
     [981,] 9.316849e-01 0.08669758 5.678e-16
     [982,] 9.342571e-01 0.08647144 1.51e-15
     [983,] 9.368364e-01 0.08624583 2.013e-15
     [984,] 9.394228e-01 0.08602076 4.671e-16
     [985,] 9.420163e-01 0.08579623 1.022e-15
     [986,] 9.446170e-01 0.08557224 -7.696e-16
     [987,] 9.472249e-01 0.08534878 1.841e-15
     [988,] 9.498399e-01 0.08512585 7.052e-16
     [989,] 9.524622e-01 0.08490346 6.16e-16
     [990,] 9.550918e-01 0.08468160 1.27e-15
     [991,] 9.577285e-01 0.08446027 4.004e-16
     [992,] 9.603726e-01 0.08423947 1.996e-15
     [993,] 9.630240e-01 0.08401920 1.19e-15
     [994,] 9.656827e-01 0.08379946 -6.275e-16
     [995,] 9.683487e-01 0.08358024 2.048e-15
     [996,] 9.710221e-01 0.08336155 4.348e-16
     [997,] 9.737029e-01 0.08314339 2.071e-15
     [998,] 9.763910e-01 0.08292575 1.54e-15
     [999,] 9.790866e-01 0.08270863 1.947e-15
     [1000,] 9.817897e-01 0.08249204 -8.359e-16
     [1001,] 9.845002e-01 0.08227596 1.246e-15
     [1002,] 9.872181e-01 0.08206041 -1.082e-17
     [1003,] 9.899436e-01 0.08184537 1.843e-15
     [1004,] 9.926766e-01 0.08163086 -3.017e-16
     [1005,] 9.954172e-01 0.08141686 2.259e-15
     [1006,] 9.981653e-01 0.08120338 7.889e-16
     [1007,] 1.000921 0.08099041 5.262e-16
     [1008,] 1.003684 0.08077796 1.331e-15
     [1009,] 1.006455 0.08056602 5.278e-16
     [1010,] 1.009234 0.08035459 -7.839e-16
     [1011,] 1.012020 0.08014368 7.84e-16
     [1012,] 1.014814 0.07993328 6.174e-16
     [1013,] 1.017616 0.07972338 -1.363e-15
     [1014,] 1.020425 0.07951399 -3.713e-16
     [1015,] 1.023242 0.07930512 2.373e-15
     [1016,] 1.026067 0.07909674 3.376e-16
     [1017,] 1.028900 0.07888888 -3.344e-16
     [1018,] 1.031741 0.07868151 -1.132e-15
     [1019,] 1.034589 0.07847466 -3.345e-16
     [1020,] 1.037445 0.07826830 2.571e-15
     [1021,] 1.040309 0.07806245 2.91e-15
     [1022,] 1.043181 0.07785709 4.2e-16
     [1023,] 1.046061 0.07765224 7.487e-16
     [1024,] 1.048949 0.07744789 7.533e-16
     [1025,] 1.051845 0.07724403 2.243e-15
     [1026,] 1.054749 0.07704067 1.746e-16
     [1027,] 1.057661 0.07683781 1.125e-15
     [1028,] 1.060581 0.07663544 1.053e-15
     [1029,] 1.063509 0.07643357 2.059e-15
     [1030,] 1.066445 0.07623218 -2.19e-16
     [1031,] 1.069389 0.07603129 6.613e-16
     [1032,] 1.072342 0.07583090 3.146e-15
     [1033,] 1.075302 0.07563099 2.281e-15
     [1034,] 1.078271 0.07543157 -6.232e-16
     [1035,] 1.081248 0.07523264 2.647e-15
     [1036,] 1.084233 0.07503420 4.053e-16
     [1037,] 1.087226 0.07483624 2.541e-15
     [1038,] 1.090228 0.07463877 1.116e-15
     [1039,] 1.093238 0.07444178 1.596e-15
     [1040,] 1.096256 0.07424528 2.061e-16
     [1041,] 1.099282 0.07404925 2.819e-15
     [1042,] 1.102317 0.07385371 2.013e-15
     [1043,] 1.105360 0.07365866 1.224e-15
     [1044,] 1.108412 0.07346408 5.295e-16
     [1045,] 1.111472 0.07326997 7.013e-16
     [1046,] 1.114541 0.07307635 2.368e-15
     [1047,] 1.117618 0.07288320 1.002e-15
     [1048,] 1.120703 0.07269053 3.751e-15
     [1049,] 1.123797 0.07249834 2.525e-15
     [1050,] 1.126900 0.07230662 7.548e-16
     [1051,] 1.130011 0.07211537 1.902e-15
     [1052,] 1.133130 0.07192459 4.339e-15
     [1053,] 1.136259 0.07173428 2.514e-15
     [1054,] 1.139396 0.07154445 7.608e-16
     [1055,] 1.142541 0.07135508 2.756e-15
     [1056,] 1.145696 0.07116618 1.482e-15
     [1057,] 1.148859 0.07097775 6.014e-16
     [1058,] 1.152030 0.07078978 2.468e-15
     [1059,] 1.155211 0.07060228 1.88e-15
     [1060,] 1.158400 0.07041525 1.749e-15
     [1061,] 1.161598 0.07022868 9.421e-16
     [1062,] 1.164805 0.07004257 2.174e-15
     [1063,] 1.168021 0.06985692 2.467e-15
     [1064,] 1.171246 0.06967173 6.191e-16
     [1065,] 1.174479 0.06948700 -4.025e-15
     [1066,] 1.177722 0.06930273 1.785e-17
     [1067,] 1.180973 0.06911892 1.444e-15
     [1068,] 1.184233 0.06893557 2.266e-15
     [1069,] 1.187503 0.06875267 -1.612e-15
     [1070,] 1.190781 0.06857023 1.804e-15
     [1071,] 1.194069 0.06838824 -1.917e-15
     [1072,] 1.197365 0.06820670 1.414e-16
     [1073,] 1.200671 0.06802561 2.612e-15
     [1074,] 1.203986 0.06784498 1.541e-15
     [1075,] 1.207310 0.06766480 -2.9e-15
     [1076,] 1.210643 0.06748507 2.575e-15
     [1077,] 1.213985 0.06730578 -1.254e-15
     [1078,] 1.217337 0.06712694 1.479e-15
     [1079,] 1.220697 0.06694855 2.211e-15
     [1080,] 1.224067 0.06677061 1.708e-15
     [1081,] 1.227447 0.06659311 1.42e-15
     [1082,] 1.230835 0.06641605 1.596e-15
     [1083,] 1.234233 0.06623943 5.165e-15
     [1084,] 1.237641 0.06606326 -1.346e-16
     [1085,] 1.241058 0.06588753 7.042e-16
     [1086,] 1.244484 0.06571224 1.844e-15
     [1087,] 1.247920 0.06553739 3.424e-15
     [1088,] 1.251365 0.06536297 4.343e-16
     [1089,] 1.254820 0.06518900 -1.76e-15
     [1090,] 1.258284 0.06501546 -1.316e-15
     [1091,] 1.261758 0.06484235 4.354e-16
     [1092,] 1.265241 0.06466968 -1.304e-15
     [1093,] 1.268734 0.06449745 -1.081e-15
     [1094,] 1.272237 0.06432564 4.397e-15
     [1095,] 1.275749 0.06415427 -9.682e-16
     [1096,] 1.279271 0.06398333 3.356e-16
     [1097,] 1.282803 0.06381282 9.619e-16
     [1098,] 1.286345 0.06364274 -8.291e-16
     [1099,] 1.289896 0.06347308 -9.638e-16
     [1100,] 1.293457 0.06330386 2.37e-15
     [1101,] 1.297028 0.06313505 1.525e-15
     [1102,] 1.300609 0.06296668 -4.776e-16
     [1103,] 1.304200 0.06279873 -1.082e-15
     [1104,] 1.307800 0.06263120 2.098e-15
     [1105,] 1.311411 0.06246410 4.264e-15
     [1106,] 1.315031 0.06229741 -1.642e-15
     [1107,] 1.318662 0.06213115 -6.051e-16
     [1108,] 1.322302 0.06196531 9.043e-16
     [1109,] 1.325953 0.06179989 4.676e-16
     [1110,] 1.329613 0.06163488 -1.424e-15
     [1111,] 1.333284 0.06147030 -1.477e-16
     [1112,] 1.336965 0.06130613 4.286e-17
     [1113,] 1.340656 0.06114237 1.608e-15
     [1114,] 1.344357 0.06097903 -6.513e-16
     [1115,] 1.348069 0.06081610 1.216e-15
     [1116,] 1.351791 0.06065359 1.313e-15
     [1117,] 1.355523 0.06049148 6.946e-16
     [1118,] 1.359265 0.06032979 1.683e-15
     [1119,] 1.363017 0.06016851 -6.84e-16
     [1120,] 1.366780 0.06000764 3.3e-15
     [1121,] 1.370554 0.05984717 8.873e-16
     [1122,] 1.374338 0.05968712 1.855e-16
     [1123,] 1.378132 0.05952747 3.067e-15
     [1124,] 1.381937 0.05936822 -5.769e-16
     [1125,] 1.385752 0.05920938 9.491e-16
     [1126,] 1.389577 0.05905094 8.418e-16
     [1127,] 1.393414 0.05889291 -2.981e-16
     [1128,] 1.397261 0.05873528 7.784e-16
     [1129,] 1.401118 0.05857805 1.897e-15
     [1130,] 1.404986 0.05842122 2.076e-15
     [1131,] 1.408865 0.05826479 6.299e-15
     [1132,] 1.412755 0.05810876 -2.834e-15
     [1133,] 1.416655 0.05795312 -2.701e-15
     [1134,] 1.420566 0.05779789 5.481e-16
     [1135,] 1.424488 0.05764304 -1.214e-15
     [1136,] 1.428421 0.05748860 4.657e-16
     [1137,] 1.432364 0.05733455 1.047e-15
     [1138,] 1.436319 0.05718089 3.001e-15
     [1139,] 1.440284 0.05702762 1.834e-15
     [1140,] 1.444260 0.05687475 2.925e-15
     [1141,] 1.448248 0.05672226 -1.451e-15
     [1142,] 1.452246 0.05657017 -2.234e-15
     [1143,] 1.456255 0.05641846 3.785e-15
     [1144,] 1.460276 0.05626714 6.219e-15
     [1145,] 1.464307 0.05611621 -9.393e-16
     [1146,] 1.468350 0.05596567 2.553e-15
     [1147,] 1.472403 0.05581551 -1.411e-15
     [1148,] 1.476468 0.05566574 2.794e-15
     [1149,] 1.480545 0.05551635 4.194e-15
     [1150,] 1.484632 0.05536734 3.319e-15
     [1151,] 1.488731 0.05521871 4.775e-15
     [1152,] 1.492841 0.05507047 4.209e-15
     [1153,] 1.496962 0.05492261 1.754e-15
     [1154,] 1.501095 0.05477512 6.092e-16
     [1155,] 1.505239 0.05462802 3.527e-15
     [1156,] 1.509395 0.05448129 2.226e-15
     [1157,] 1.513562 0.05433494 4.702e-15
     [1158,] 1.517740 0.05418896 -2.868e-16
     [1159,] 1.521931 0.05404336 3.258e-16
     [1160,] 1.526132 0.05389814 1.93e-15
     [1161,] 1.530346 0.05375329 5.574e-15
     [1162,] 1.534571 0.05360881 -1.489e-15
     [1163,] 1.538807 0.05346470 -2.865e-16
     [1164,] 1.543055 0.05332097 1.257e-15
     [1165,] 1.547315 0.05317760 2.272e-15
     [1166,] 1.551587 0.05303460 -2.439e-15
     [1167,] 1.555871 0.05289197 6.461e-16
     [1168,] 1.560166 0.05274971 -2.643e-15
     [1169,] 1.564473 0.05260782 1.592e-15
     [1170,] 1.568793 0.05246629 1.375e-15
     [1171,] 1.573124 0.05232513 7.383e-16
     [1172,] 1.577467 0.05218433 1.303e-15
     [1173,] 1.581822 0.05204390 1.401e-15
     [1174,] 1.586189 0.05190382 -1.825e-15
     [1175,] 1.590568 0.05176411 1.82e-15
     [1176,] 1.594959 0.05162476 1.38e-15
     [1177,] 1.599362 0.05148577 3.022e-15
     [1178,] 1.603778 0.05134714 3.12e-15
     [1179,] 1.608206 0.05120887 4.785e-15
     [1180,] 1.612645 0.05107096 1.771e-15
     [1181,] 1.617098 0.05093340 3.378e-15
     [1182,] 1.621562 0.05079620 3.083e-16
     [1183,] 1.626039 0.05065935 2.321e-16
     [1184,] 1.630528 0.05052286 -2.585e-16
     [1185,] 1.635029 0.05038672 4.032e-15
     [1186,] 1.639543 0.05025094 5.987e-15
     [1187,] 1.644070 0.05011550 2.427e-15
     [1188,] 1.648609 0.04998042 2.938e-15
     [1189,] 1.653160 0.04984569 1.482e-15
     [1190,] 1.657724 0.04971131 1.398e-15
     [1191,] 1.662301 0.04957727 3.259e-15
     [1192,] 1.666890 0.04944359 4.512e-17
     [1193,] 1.671492 0.04931025 2.411e-15
     [1194,] 1.676106 0.04917725 7.395e-16
     [1195,] 1.680734 0.04904461 6.122e-17
     [1196,] 1.685374 0.04891230 1.705e-15
     [1197,] 1.690027 0.04878034 3.552e-16
     [1198,] 1.694693 0.04864873 -4.716e-15
     [1199,] 1.699371 0.04851746 3.419e-15
     [1200,] 1.704063 0.04838652 2.424e-15
     [1201,] 1.708767 0.04825593 -7.684e-17
     [1202,] 1.713485 0.04812568 4.636e-15
     [1203,] 1.718215 0.04799577 1.139e-15
     [1204,] 1.722959 0.04786619 3.06e-15
     [1205,] 1.727716 0.04773696 4.513e-15
     [1206,] 1.732486 0.04760806 4.991e-15
     [1207,] 1.737269 0.04747949 -2.328e-16
     [1208,] 1.742065 0.04735126 2.06e-15
     [1209,] 1.746874 0.04722337 4.925e-15
     [1210,] 1.751697 0.04709581 3.091e-15
     [1211,] 1.756533 0.04696858 -1.678e-15
     [1212,] 1.761382 0.04684168 2.994e-15
     [1213,] 1.766245 0.04671511 -2.946e-15
     [1214,] 1.771121 0.04658888 4.157e-15
     [1215,] 1.776011 0.04646297 1.52e-15
     [1216,] 1.780914 0.04633740 2.409e-15
     [1217,] 1.785831 0.04621215 2.761e-15
     [1218,] 1.790761 0.04608723 -6.297e-17
     [1219,] 1.795705 0.04596263 -1.754e-15
     [1220,] 1.800663 0.04583836 2.431e-15
     [1221,] 1.805634 0.04571442 4.365e-15
     [1222,] 1.810619 0.04559080 2.135e-15
     [1223,] 1.815617 0.04546750 5.142e-15
     [1224,] 1.820630 0.04534453 3.184e-16
     [1225,] 1.825656 0.04522187 2.112e-15
     [1226,] 1.830696 0.04509954 4.67e-16
     [1227,] 1.835751 0.04497753 -6.113e-16
     [1228,] 1.840819 0.04485584 4.059e-15
     [1229,] 1.845901 0.04473447 4.007e-15
     [1230,] 1.850997 0.04461341 1.444e-15
     [1231,] 1.856107 0.04449268 -2.546e-15
     [1232,] 1.861231 0.04437225 4.523e-15
     [1233,] 1.866370 0.04425215 1.655e-15
     [1234,] 1.871522 0.04413236 -3.949e-15
     [1235,] 1.876689 0.04401288 1.23e-15
     [1236,] 1.881870 0.04389372 7.23e-15
     [1237,] 1.887066 0.04377487 4.931e-15
     [1238,] 1.892276 0.04365634 -9.981e-17
     [1239,] 1.897500 0.04353811 3.511e-16
     [1240,] 1.902738 0.04342019 -3.712e-15
     [1241,] 1.907991 0.04330259 2.133e-15
     [1242,] 1.913259 0.04318529 4.685e-16
     [1243,] 1.918541 0.04306830 -3.525e-15
     [1244,] 1.923837 0.04295162 4.134e-15
     [1245,] 1.929149 0.04283525 8.496e-15
     [1246,] 1.934475 0.04271918 4.287e-15
     [1247,] 1.939815 0.04260342 -3.876e-15
     [1248,] 1.945171 0.04248796 4.275e-15
     [1249,] 1.950541 0.04237281 4.189e-16
     [1250,] 1.955926 0.04225796 -1.65e-15
     [1251,] 1.961326 0.04214341 3.528e-15
     [1252,] 1.966741 0.04202916 5.395e-15
     [1253,] 1.972170 0.04191521 1.415e-15
     [1254,] 1.977615 0.04180157 8.875e-15
     [1255,] 1.983075 0.04168822 -6.396e-17
     [1256,] 1.988550 0.04157517 2.273e-15
     [1257,] 1.994039 0.04146242 3.16e-15
     [1258,] 1.999545 0.04134997 -2.94e-15
     [1259,] 2.005065 0.04123782 -5.823e-15
     [1260,] 2.010600 0.04112596 -2.958e-15
     [1261,] 2.016151 0.04101439 5.387e-15
     [1262,] 2.021717 0.04090312 6.115e-15
     [1263,] 2.027299 0.04079215 3.474e-15
     [1264,] 2.032896 0.04068146 1.754e-15
     [1265,] 2.038508 0.04057107 2.655e-15
     [1266,] 2.044136 0.04046097 -8.541e-16
     [1267,] 2.049779 0.04035116 -2.774e-15
     [1268,] 2.055438 0.04024164 4.348e-15
     [1269,] 2.061113 0.04013241 -2.488e-15
     [1270,] 2.066803 0.04002347 3.495e-16
     [1271,] 2.072509 0.03991482 2.992e-15
     [1272,] 2.078231 0.03980645 -3.906e-15
     [1273,] 2.083968 0.03969838 1.591e-15
     [1274,] 2.089722 0.03959058 -2.549e-15
     [1275,] 2.095491 0.03948307 4.957e-15
     [1276,] 2.101276 0.03937585 2.67e-15
     [1277,] 2.107077 0.03926891 4.467e-15
     [1278,] 2.112894 0.03916226 -4.296e-15
     [1279,] 2.118728 0.03905588 1.852e-15
     [1280,] 2.124577 0.03894979 3.338e-15
     [1281,] 2.130442 0.03884398 3.579e-15
     [1282,] 2.136324 0.03873845 -2.706e-15
     [1283,] 2.142222 0.03863320 -9.48e-16
     [1284,] 2.148136 0.03852822 -3.996e-15
     [1285,] 2.154067 0.03842353 -6.634e-16
     [1286,] 2.160014 0.03831911 9.675e-15
     [1287,] 2.165977 0.03821497 1.267e-15
     [1288,] 2.171957 0.03811111 7.876e-15
     [1289,] 2.177953 0.03800752 1.106e-14
     [1290,] 2.183966 0.03790421 -2.043e-15
     [1291,] 2.189995 0.03780117 6.037e-15
     [1292,] 2.196041 0.03769841 1.922e-15
     [1293,] 2.202104 0.03759591 3.805e-15
     [1294,] 2.208184 0.03749369 1.072e-15
     [1295,] 2.214280 0.03739175 1.656e-15
     [1296,] 2.220393 0.03729007 -6.119e-15
     [1297,] 2.226523 0.03718866 8.169e-16
     [1298,] 2.232670 0.03708752 8.494e-16
     [1299,] 2.238834 0.03698665 1.247e-15
     [1300,] 2.245015 0.03688605 1.359e-14
     [1301,] 2.251213 0.03678572 2.096e-15
     [1302,] 2.257428 0.03668565 9.576e-15
     [1303,] 2.263660 0.03658585 5.53e-15
     [1304,] 2.269909 0.03648631 6.364e-15
     [1305,] 2.276176 0.03638704 1.473e-14
     [1306,] 2.282460 0.03628803 1.292e-15
     [1307,] 2.288761 0.03618929 9.477e-15
     [1308,] 2.295080 0.03609081 -8.545e-15
     [1309,] 2.301416 0.03599259 -1.951e-16
     [1310,] 2.307770 0.03589463 5.173e-15
     [1311,] 2.314141 0.03579694 -8.596e-15
     [1312,] 2.320530 0.03569950 9.46e-16
     [1313,] 2.326937 0.03560233 2.996e-15
     [1314,] 2.333361 0.03550541 -4.236e-15
     [1315,] 2.339803 0.03540875 5.341e-15
     [1316,] 2.346262 0.03531235 1.826e-15
     [1317,] 2.352740 0.03521620 -6.1e-16
     [1318,] 2.359235 0.03512031 1.084e-14
     [1319,] 2.365748 0.03502468 9.829e-15
     [1320,] 2.372280 0.03492930 6.123e-15
     [1321,] 2.378829 0.03483418 1.011e-14
     [1322,] 2.385396 0.03473931 5.013e-15
     [1323,] 2.391982 0.03464469 8.164e-15
     [1324,] 2.398586 0.03455033 7.688e-15
     [1325,] 2.405208 0.03445622 -3.095e-15
     [1326,] 2.411848 0.03436236 -4.061e-15
     [1327,] 2.418506 0.03426875 3.862e-15
     [1328,] 2.425183 0.03417539 1.388e-14
     [1329,] 2.431879 0.03408228 -1.475e-15
     [1330,] 2.438593 0.03398941 -2.499e-15
     [1331,] 2.445325 0.03389680 -5.722e-16
     [1332,] 2.452076 0.03380443 -1.722e-15
     [1333,] 2.458846 0.03371231 -7.495e-16
     [1334,] 2.465634 0.03362044 4.531e-15
     [1335,] 2.472441 0.03352881 2.737e-17
     [1336,] 2.479267 0.03343743 1.247e-15
     [1337,] 2.486112 0.03334629 9.009e-16
     [1338,] 2.492975 0.03325540 -3.405e-15
     [1339,] 2.499858 0.03316474 -2.393e-15
     [1340,] 2.506759 0.03307433 7.876e-15
     [1341,] 2.513680 0.03298417 -3.798e-16
     [1342,] 2.520619 0.03289424 -9.799e-15
     [1343,] 2.527578 0.03280455 -1.839e-15
     [1344,] 2.534556 0.03271511 4.918e-15
     [1345,] 2.541554 0.03262590 5.826e-15
     [1346,] 2.548570 0.03253693 -6.076e-15
     [1347,] 2.555606 0.03244821 1.127e-14
     [1348,] 2.562662 0.03235971 -2.713e-15
     [1349,] 2.569737 0.03227146 4.841e-15
     [1350,] 2.576831 0.03218344 1.435e-14
     [1351,] 2.583945 0.03209566 1.402e-14
     [1352,] 2.591079 0.03200811 -5.428e-15
     [1353,] 2.598232 0.03192080 -6.736e-15
     [1354,] 2.605405 0.03183372 7.513e-15
     [1355,] 2.612598 0.03174687 -6.248e-16
     [1356,] 2.619811 0.03166026 1.834e-15
     [1357,] 2.627044 0.03157388 1.005e-15
     [1358,] 2.634297 0.03148773 1.377e-14
     [1359,] 2.641569 0.03140182 1.272e-14
     [1360,] 2.648862 0.03131613 -1.665e-15
     [1361,] 2.656175 0.03123067 1.144e-15
     [1362,] 2.663508 0.03114544 -5.317e-16
     [1363,] 2.670861 0.03106045 1.541e-14
     [1364,] 2.678235 0.03097567 2.792e-15
     [1365,] 2.685629 0.03089113 1.89e-15
     [1366,] 2.693043 0.03080681 1.441e-14
     [1367,] 2.700478 0.03072272 7.815e-15
     [1368,] 2.707934 0.03063886 -1.603e-15
     [1369,] 2.715410 0.03055522 -4.211e-17
     [1370,] 2.722906 0.03047181 -8.222e-15
     [1371,] 2.730424 0.03038862 -2.179e-15
     [1372,] 2.737962 0.03030565 -2.697e-15
     [1373,] 2.745521 0.03022291 4.608e-15
     [1374,] 2.753100 0.03014038 2.405e-15
     [1375,] 2.760701 0.03005808 7.638e-15
     [1376,] 2.768323 0.02997600 5.308e-15
     [1377,] 2.775965 0.02989415 3.711e-17
     [1378,] 2.783629 0.02981251 2.496e-14
     [1379,] 2.791314 0.02973109 2.704e-16
     [1380,] 2.799020 0.02964989 1.113e-14
     [1381,] 2.806748 0.02956891 1.749e-14
     [1382,] 2.814497 0.02948815 4.889e-15
     [1383,] 2.822267 0.02940760 4.073e-15
     [1384,] 2.830058 0.02932727 7.563e-15
     [1385,] 2.837871 0.02924716 4.028e-15
     [1386,] 2.845706 0.02916726 4.47e-15
     [1387,] 2.853563 0.02908758 6.687e-15
     [1388,] 2.861441 0.02900811 -8.354e-16
     [1389,] 2.869340 0.02892885 1.89e-14
     [1390,] 2.877262 0.02884981 -6.077e-15
     [1391,] 2.885205 0.02877099 -5.762e-15
     [1392,] 2.893171 0.02869237 2.121e-14
     [1393,] 2.901158 0.02861397 -4.017e-15
     [1394,] 2.909168 0.02853577 2.16e-14
     [1395,] 2.917199 0.02845779 7.755e-15
     [1396,] 2.925253 0.02838002 3.335e-15
     [1397,] 2.933329 0.02830246 -7.373e-15
     [1398,] 2.941427 0.02822510 3.279e-15
     [1399,] 2.949548 0.02814796 -4.857e-15
     [1400,] 2.957691 0.02807102 -6.76e-15
     [1401,] 2.965856 0.02799429 8.868e-15
     [1402,] 2.974044 0.02791777 -9.918e-16
     [1403,] 2.982255 0.02784145 1.538e-15
     [1404,] 2.990488 0.02776534 4.298e-16
     [1405,] 2.998744 0.02768943 -2.363e-15
     [1406,] 3.007023 0.02761373 2.196e-14
     [1407,] 3.015325 0.02753824 2.613e-14
     [1408,] 3.023650 0.02746294 -2.491e-14
     [1409,] 3.031997 0.02738785 -1.352e-14
     [1410,] 3.040368 0.02731297 8.453e-17
     [1411,] 3.048762 0.02723828 1.472e-14
     [1412,] 3.057178 0.02716380 -1.578e-14
     [1413,] 3.065619 0.02708951 7.976e-15
     [1414,] 3.074082 0.02701543 -3.519e-17
     [1415,] 3.082569 0.02694155 2.485e-14
     [1416,] 3.091079 0.02686787 1.516e-14
     [1417,] 3.099613 0.02679438 1.35e-14
     [1418,] 3.108170 0.02672110 1.905e-14
     [1419,] 3.116751 0.02664801 1.632e-14
     [1420,] 3.125356 0.02657512 -1.224e-14
     [1421,] 3.133984 0.02650243 4.292e-14
     [1422,] 3.142636 0.02642993 1.372e-14
     [1423,] 3.151313 0.02635763 3.637e-14
     [1424,] 3.160013 0.02628552 -4.703e-15
     [1425,] 3.168737 0.02621361 2.371e-14
     [1426,] 3.177485 0.02614190 1.198e-14
     [1427,] 3.186257 0.02607037 2.781e-14
     [1428,] 3.195054 0.02599905 -9.911e-15
     [1429,] 3.203875 0.02592791 -8.345e-15
     [1430,] 3.212720 0.02585696 -1.124e-14
     [1431,] 3.221589 0.02578621 2.209e-14
     [1432,] 3.230483 0.02571565 -8.656e-15
     [1433,] 3.239402 0.02564528 3.227e-14
     [1434,] 3.248345 0.02557510 1.513e-14
     [1435,] 3.257313 0.02550511 1.033e-14
     [1436,] 3.266306 0.02543531 1.007e-14
     [1437,] 3.275323 0.02536570 -2.071e-14
     [1438,] 3.284366 0.02529628 -2.28e-14
     [1439,] 3.293433 0.02522704 3.546e-14
     [1440,] 3.302526 0.02515799 1.541e-14
     [1441,] 3.311643 0.02508913 -4.71e-15
     [1442,] 3.320786 0.02502045 7.556e-15
     [1443,] 3.329954 0.02495197 3.761e-14
     [1444,] 3.339147 0.02488366 -3.022e-14
     [1445,] 3.348366 0.02481554 1.302e-16
     [1446,] 3.357610 0.02474761 2.837e-14
     [1447,] 3.366879 0.02467986 -1.359e-15
     [1448,] 3.376174 0.02461229 8.289e-15
     [1449,] 3.385495 0.02454491 4.085e-14
     [1450,] 3.394842 0.02447770 1.907e-14
     [1451,] 3.404214 0.02441069 -1.151e-14
     [1452,] 3.413613 0.02434385 -2.512e-14
     [1453,] 3.423037 0.02427719 2.098e-14
     [1454,] 3.432487 0.02421071 7.161e-15
     [1455,] 3.441963 0.02414442 2.726e-16
     [1456,] 3.451466 0.02407830 1.797e-14
     [1457,] 3.460994 0.02401236 1.308e-14
     [1458,] 3.470549 0.02394660 2.285e-14
     [1459,] 3.480131 0.02388102 6.119e-15
     [1460,] 3.489739 0.02381562 1.185e-14
     [1461,] 3.499373 0.02375040 1.861e-14
     [1462,] 3.509034 0.02368535 6.512e-15
     [1463,] 3.518722 0.02362047 2.206e-15
     [1464,] 3.528436 0.02355578 -1.286e-14
     [1465,] 3.538177 0.02349126 1.46e-14
     [1466,] 3.547945 0.02342691 5.589e-15
     [1467,] 3.557740 0.02336274 -1.856e-15
     [1468,] 3.567563 0.02329874 -1.84e-14
     [1469,] 3.577412 0.02323492 -4.375e-15
     [1470,] 3.587288 0.02317127 6.146e-16
     [1471,] 3.597192 0.02310779 1.627e-14
     [1472,] 3.607123 0.02304448 1.101e-14
     [1473,] 3.617081 0.02298135 2.667e-15
     [1474,] 3.627067 0.02291839 2.512e-14
     [1475,] 3.637081 0.02285560 -2.623e-15
     [1476,] 3.647122 0.02279297 1.984e-14
     [1477,] 3.657191 0.02273052 1.004e-14
     [1478,] 3.667287 0.02266824 1.975e-14
     [1479,] 3.677412 0.02260613 2.519e-14
     [1480,] 3.687564 0.02254418 1.125e-14
     [1481,] 3.697745 0.02248241 1.612e-14
     [1482,] 3.707954 0.02242080 1.939e-14
     [1483,] 3.718190 0.02235936 6.39e-15
     [1484,] 3.728456 0.02229808 -5.704e-15
     [1485,] 3.738749 0.02223698 -1.124e-15
     [1486,] 3.749071 0.02217604 3.336e-16
     [1487,] 3.759421 0.02211526 9.598e-15
     [1488,] 3.769800 0.02205465 -5.367e-15
     [1489,] 3.780208 0.02199420 2.74e-14
     [1490,] 3.790644 0.02193392 -1.146e-14
     [1491,] 3.801109 0.02187380 -2.23e-15
     [1492,] 3.811603 0.02181385 -3.821e-15
     [1493,] 3.822126 0.02175405 3.662e-14
     [1494,] 3.832678 0.02169442 5.64e-15
     [1495,] 3.843259 0.02163496 3.927e-14
     [1496,] 3.853869 0.02157565 -2.651e-15
     [1497,] 3.864509 0.02151651 4.793e-15
     [1498,] 3.875178 0.02145752 2.738e-14
     [1499,] 3.885877 0.02139870 -1.941e-14
     [1500,] 3.896605 0.02134003 2.836e-14
     [1501,] 3.907362 0.02128153 9.249e-15
     [1502,] 3.918150 0.02122318 4.747e-15
     [1503,] 3.928967 0.02116500 -6.158e-15
     [1504,] 3.939814 0.02110697 -1.438e-14
     [1505,] 3.950691 0.02104910 6.346e-15
     [1506,] 3.961598 0.02099139 2.29e-14
     [1507,] 3.972535 0.02093383 -7.223e-15
     [1508,] 3.983502 0.02087643 2.108e-14
     [1509,] 3.994499 0.02081919 2.867e-14
     [1510,] 4.005527 0.02076210 -4.883e-14
     [1511,] 4.016586 0.02070517 -1.666e-14
     [1512,] 4.027675 0.02064839 9.445e-15
     [1513,] 4.038794 0.02059177 1.831e-14
     [1514,] 4.049944 0.02053530 4.412e-15
     [1515,] 4.061125 0.02047898 -1.698e-15
     [1516,] 4.072337 0.02042282 -1.087e-14
     [1517,] 4.083580 0.02036681 1.918e-14
     [1518,] 4.094854 0.02031095 1.904e-14
     [1519,] 4.106159 0.02025525 -1.039e-14
     [1520,] 4.117495 0.02019969 3.497e-14
     [1521,] 4.128862 0.02014429 -2.582e-14
     [1522,] 4.140261 0.02008904 -1.19e-14
     [1523,] 4.151691 0.02003394 1.494e-14
     [1524,] 4.163153 0.01997899 1.775e-14
     [1525,] 4.174647 0.01992419 -2.469e-14
     [1526,] 4.186172 0.01986954 -2.046e-14
     [1527,] 4.197729 0.01981503 -2.456e-16
     [1528,] 4.209318 0.01976068 2.497e-14
     [1529,] 4.220939 0.01970647 5.371e-15
     [1530,] 4.232592 0.01965241 4.262e-14
     [1531,] 4.244277 0.01959850 -3.061e-14
     [1532,] 4.255995 0.01954474 3.803e-14
     [1533,] 4.267745 0.01949112 -2.461e-16
     [1534,] 4.279527 0.01943765 -4.938e-16
     [1535,] 4.291342 0.01938432 -5.43e-15
     [1536,] 4.303189 0.01933114 3.69e-14
     [1537,] 4.315069 0.01927810 -3.923e-14
     [1538,] 4.326982 0.01922521 -8.734e-15
     [1539,] 4.338928 0.01917246 1.602e-14
     [1540,] 4.350907 0.01911986 -3.715e-14
     [1541,] 4.362919 0.01906740 1.897e-14
     [1542,] 4.374964 0.01901508 -1.023e-14
     [1543,] 4.387042 0.01896291 6.137e-15
     [1544,] 4.399153 0.01891087 -2.593e-14
     [1545,] 4.411299 0.01885898 -1.777e-14
     [1546,] 4.423477 0.01880723 6.362e-15
     [1547,] 4.435689 0.01875563 -1.193e-14
     [1548,] 4.447935 0.01870416 -1.323e-14
     [1549,] 4.460215 0.01865283 -2.371e-14
     [1550,] 4.472529 0.01860164 4.416e-14
     [1551,] 4.484876 0.01855060 4.305e-14
     [1552,] 4.497258 0.01849969 3.001e-14
     [1553,] 4.509674 0.01844892 -1.089e-14
     [1554,] 4.522124 0.01839829 -3.901e-14
     [1555,] 4.534609 0.01834779 5.301e-14
     [1556,] 4.547128 0.01829744 -1.24e-14
     [1557,] 4.559681 0.01824722 8.416e-15
     [1558,] 4.572269 0.01819714 -7.685e-15
     [1559,] 4.584892 0.01814719 -3.141e-14
     [1560,] 4.597550 0.01809738 3.229e-14
     [1561,] 4.610243 0.01804771 8.755e-15
     [1562,] 4.622971 0.01799818 3.52e-15
     [1563,] 4.635734 0.01794877 1.865e-14
     [1564,] 4.648532 0.01789951 1.039e-14
     [1565,] 4.661366 0.01785037 -2.598e-15
     [1566,] 4.674235 0.01780138 2.082e-14
     [1567,] 4.687139 0.01775251 -4.675e-14
     [1568,] 4.700079 0.01770378 -4.241e-14
     [1569,] 4.713055 0.01765518 4.733e-14
     [1570,] 4.726067 0.01760672 -8.142e-15
     [1571,] 4.739114 0.01755838 -1.911e-14
     [1572,] 4.752198 0.01751018 -2.144e-14
     [1573,] 4.765318 0.01746211 -1.522e-14
     [1574,] 4.778474 0.01741417 -7.229e-15
     [1575,] 4.791666 0.01736636 -2.416e-15
     [1576,] 4.804895 0.01731869 -4.541e-14
     [1577,] 4.818160 0.01727114 -7.219e-15
     [1578,] 4.831462 0.01722372 1.319e-14
     [1579,] 4.844800 0.01717643 4.512e-15
     [1580,] 4.858176 0.01712927 1.865e-15
     [1581,] 4.871588 0.01708224 4.294e-14
     [1582,] 4.885037 0.01703534 2.082e-14
     [1583,] 4.898524 0.01698857 5.585e-14
     [1584,] 4.912047 0.01694192 3.466e-14
     [1585,] 4.925608 0.01689541 -1.326e-14
     [1586,] 4.939207 0.01684901 3.65e-14
     [1587,] 4.952843 0.01680275 -5.954e-14
     [1588,] 4.966517 0.01675661 -6.234e-14
     [1589,] 4.980228 0.01671060 -3.293e-14
     [1590,] 4.993977 0.01666471 -9.287e-15
     [1591,] 5.007764 0.01661895 -5.103e-14
     [1592,] 5.021590 0.01657331 3.576e-14
     [1593,] 5.035453 0.01652780 1.084e-14
     [1594,] 5.049355 0.01648242 6.429e-14
     [1595,] 5.063295 0.01643715 1.895e-14
     [1596,] 5.077274 0.01639201 -1.663e-14
     [1597,] 5.091291 0.01634700 -1.755e-14
     [1598,] 5.105347 0.01630210 -3.623e-14
     [1599,] 5.119441 0.01625733 7.705e-14
     [1600,] 5.133575 0.01621269 8.107e-14
     [1601,] 5.147748 0.01616816 -5.02e-14
     [1602,] 5.161959 0.01612376 -6.217e-14
     [1603,] 5.176210 0.01607947 -1.751e-14
     [1604,] 5.190501 0.01603531 -1.608e-14
     [1605,] 5.204831 0.01599127 -2.249e-14
     [1606,] 5.219200 0.01594735 3.152e-14
     [1607,] 5.233609 0.01590355 2.939e-14
     [1608,] 5.248058 0.01585987 1.076e-14
     [1609,] 5.262546 0.01581631 6.705e-14
     [1610,] 5.277075 0.01577286 1.029e-14
     [1611,] 5.291644 0.01572954 5.312e-14
     [1612,] 5.306253 0.01568633 -8.552e-14
     [1613,] 5.320902 0.01564325 6.729e-14
     [1614,] 5.335592 0.01560028 -1.031e-14
     [1615,] 5.350322 0.01555743 -1.604e-14
     [1616,] 5.365093 0.01551469 1.058e-13
     [1617,] 5.379905 0.01547207 5.09e-14
     [1618,] 5.394758 0.01542957 1.946e-14
     [1619,] 5.409652 0.01538719 9.621e-14
     [1620,] 5.424586 0.01534492 9.065e-14
     [1621,] 5.439562 0.01530276 8.538e-14
     [1622,] 5.454580 0.01526073 8.059e-14
     [1623,] 5.469639 0.01521880 7.582e-14
     [1624,] 5.484739 0.01517699 7.153e-14
     [1625,] 5.499881 0.01513530 6.751e-14
     [1626,] 5.515065 0.01509372 6.365e-14
     [1627,] 5.530291 0.01505225 6e-14
     [1628,] 5.545559 0.01501090 5.648e-14
     [1629,] 5.560869 0.01496966 5.319e-14
     [1630,] 5.576221 0.01492853 5.026e-14
     [1631,] 5.591616 0.01488752 4.74e-14
     [1632,] 5.607053 0.01484662 4.472e-14
     [1633,] 5.622533 0.01480583 4.205e-14
     [1634,] 5.638055 0.01476515 3.96e-14
     [1635,] 5.653621 0.01472458 3.732e-14
     [1636,] 5.669229 0.01468412 3.523e-14
     [1637,] 5.684881 0.01464378 3.318e-14
     [1638,] 5.700575 0.01460354 3.131e-14
     [1639,] 5.716313 0.01456342 2.948e-14
     [1640,] 5.732095 0.01452340 2.786e-14
     [1641,] 5.747920 0.01448350 2.608e-14
     [1642,] 5.763788 0.01444370 2.469e-14
     [1643,] 5.779701 0.01440401 2.329e-14
     [1644,] 5.795657 0.01436443 2.191e-14
     [1645,] 5.811658 0.01432496 2.066e-14
     [1646,] 5.827702 0.01428560 1.948e-14
     [1647,] 5.843791 0.01424634 1.828e-14
     [1648,] 5.859925 0.01420720 1.729e-14
     [1649,] 5.876103 0.01416816 1.636e-14
     [1650,] 5.892325 0.01412922 1.538e-14
     [1651,] 5.908593 0.01409040 1.446e-14
     [1652,] 5.924905 0.01405167 1.372e-14
     [1653,] 5.941262 0.01401306 1.288e-14
     [1654,] 5.957665 0.01397455 1.203e-14
     [1655,] 5.974112 0.01393615 1.145e-14
     [1656,] 5.990605 0.01389785 1.08e-14
     [1657,] 6.007144 0.01385966 1.003e-14
     [1658,] 6.023729 0.01382157 9.508e-15
     [1659,] 6.040359 0.01378358 9.021e-15
     [1660,] 6.057035 0.01374570 8.534e-15
     [1661,] 6.073757 0.01370793 7.955e-15
     [1662,] 6.090525 0.01367025 7.403e-15
     [1663,] 6.107340 0.01363268 6.97e-15
     [1664,] 6.124201 0.01359522 6.675e-15
     [1665,] 6.141108 0.01355785 6.239e-15
     [1666,] 6.158062 0.01352059 5.955e-15
     [1667,] 6.175063 0.01348343 5.494e-15
     [1668,] 6.192111 0.01344637 5.252e-15
     [1669,] 6.209206 0.01340941 4.995e-15
     [1670,] 6.226348 0.01337256 4.568e-15
     [1671,] 6.243538 0.01333580 4.355e-15
     [1672,] 6.260775 0.01329915 4.07e-15
     [1673,] 6.278060 0.01326259 4.011e-15
     [1674,] 6.295392 0.01322614 3.663e-15
     [1675,] 6.312772 0.01318979 3.446e-15
     [1676,] 6.330200 0.01315353 3.286e-15
     [1677,] 6.347676 0.01311738 3.085e-15
     [1678,] 6.365201 0.01308132 2.747e-15
     [1679,] 6.382774 0.01304537 2.705e-15
     [1680,] 6.400395 0.01300951 2.549e-15
     [1681,] 6.418065 0.01297375 2.425e-15
     [1682,] 6.435784 0.01293809 2.28e-15
     [1683,] 6.453552 0.01290252 2.132e-15
     [1684,] 6.471368 0.01286705 2.002e-15
     [1685,] 6.489234 0.01283168 1.88e-15
     [1686,] 6.507150 0.01279641 1.846e-15
     [1687,] 6.525114 0.01276124 1.664e-15
     [1688,] 6.543129 0.01272616 1.497e-15
     [1689,] 6.561193 0.01269117 1.562e-15
     [1690,] 6.579307 0.01265628 1.381e-15
     [1691,] 6.597471 0.01262149 1.384e-15
     [1692,] 6.615685 0.01258680 1.241e-15
     [1693,] 6.633949 0.01255219 1.224e-15
     [1694,] 6.652264 0.01251769 1.121e-15
     [1695,] 6.670629 0.01248328 9.35e-16
     [1696,] 6.689046 0.01244896 9.259e-16
     [1697,] 6.707512 0.01241473 8.073e-16
     [1698,] 6.726030 0.01238060 7.786e-16
     [1699,] 6.744599 0.01234657 8.528e-16
     [1700,] 6.763220 0.01231262 6.848e-16
     [1701,] 6.781891 0.01227877 7.067e-16
     [1702,] 6.800615 0.01224502 6.823e-16
     [1703,] 6.819390 0.01221135 6.953e-16
     [1704,] 6.838216 0.01217778 4.6e-16
     [1705,] 6.857095 0.01214430 4.165e-16
     [1706,] 6.876026 0.01211091 3.989e-16
     [1707,] 6.895009 0.01207761 4.197e-16
     [1708,] 6.914045 0.01204441 4.496e-16
     [1709,] 6.933133 0.01201129 2.82e-16
     [1710,] 6.952274 0.01197827 4.606e-16
     [1711,] 6.971467 0.01194533 3.791e-16
     [1712,] 6.990714 0.01191249 2.57e-16
     [1713,] 7.010014 0.01187974 2.866e-16
     [1714,] 7.029367 0.01184708 3.743e-16
     [1715,] 7.048773 0.01181450 3.281e-16
     [1716,] 7.068233 0.01178202 2.185e-16
     [1717,] 7.087747 0.01174962 3.291e-16
     [1718,] 7.107315 0.01171732 2.477e-16
     [1719,] 7.126936 0.01168510 2.109e-16
     [1720,] 7.146612 0.01165297 2.017e-16
     [1721,] 7.166342 0.01162093 6.539e-17
     [1722,] 7.186127 0.01158897 1.037e-16
     [1723,] 7.205966 0.01155711 1.101e-16
     [1724,] 7.225860 0.01152533 1.341e-17
     [1725,] 7.245809 0.01149364 1.204e-16
     [1726,] 7.265813 0.01146203 4.788e-17
     [1727,] 7.285872 0.01143052 1.286e-16
     [1728,] 7.305987 0.01139909 1.012e-16
     [1729,] 7.326157 0.01136774 8.558e-17
     [1730,] 7.346383 0.01133648 1.444e-16
     [1731,] 7.366665 0.01130531 -1.294e-17
     [1732,] 7.387002 0.01127422 8.415e-17
     [1733,] 7.407396 0.01124322 5.994e-17
     [1734,] 7.427846 0.01121230 3.653e-17
     [1735,] 7.448353 0.01118147 1.144e-16
     [1736,] 7.468916 0.01115072 8.587e-18
     [1737,] 7.489536 0.01112006 1.529e-16
     [1738,] 7.510213 0.01108948 -4.146e-16
     [1739,] 7.530947 0.01105898 -4.109e-16
     [1740,] 7.551738 0.01102857 -4.397e-16
     [1741,] 7.572587 0.01099824 -2.923e-16
     [1742,] 7.593493 0.01096800 -3.568e-16
     [1743,] 7.614457 0.01093783 -3.542e-16
     [1744,] 7.635479 0.01090775 -3.314e-16
     [1745,] 7.656558 0.01087776 -2.319e-16
     [1746,] 7.677696 0.01084784 -1.937e-16
     [1747,] 7.698893 0.01081801 -3.779e-16
     [1748,] 7.720148 0.01078826 -2.408e-16
     [1749,] 7.741461 0.01075859 -3.285e-16
     [1750,] 7.762834 0.01072900 -2.45e-16
     [1751,] 7.784265 0.01069949 -4.122e-16
     [1752,] 7.805756 0.01067007 -1.744e-16
     [1753,] 7.827306 0.01064072 -2.245e-16
     [1754,] 7.848915 0.01061146 -1.143e-16
     [1755,] 7.870584 0.01058228 -1.208e-16
     [1756,] 7.892313 0.01055317 -2.098e-16
     [1757,] 7.914102 0.01052415 -2.054e-16
     [1758,] 7.935951 0.01049520 -1.702e-16
     [1759,] 7.957860 0.01046634 -1.869e-16
     [1760,] 7.979830 0.01043755 -7.887e-17
     [1761,] 8.001861 0.01040885 -1.832e-16
     [1762,] 8.023952 0.01038022 -3.025e-16
     [1763,] 8.046104 0.01035167 -2.032e-16
     [1764,] 8.068318 0.01032320 -7.211e-17
     [1765,] 8.090592 0.01029481 -4.149e-17
     [1766,] 8.112929 0.01026649 -2.485e-16
     [1767,] 8.135327 0.01023825 -3.832e-17
     [1768,] 8.157786 0.01021009 -1.914e-16
     [1769,] 8.180308 0.01018201 -2.145e-16
     [1770,] 8.202892 0.01015401 2.517e-18
     [1771,] 8.225538 0.01012608 -7.205e-17
     [1772,] 8.248247 0.01009823 -6.848e-17
     [1773,] 8.271019 0.01007045 -1.489e-16
     [1774,] 8.293853 0.01004275 -2.556e-16
     [1775,] 8.316751 0.01001513 -2.442e-16
     [1776,] 8.339711 0.00998758 -2.471e-17
     [1777,] 8.362735 0.00996011 -2.17e-16
     [1778,] 8.385823 0.00993272 -1.558e-16
     [1779,] 8.408974 0.00990539 -1.62e-17
     [1780,] 8.432189 0.00987815 -1.539e-16
     [1781,] 8.455469 0.00985098 -1.104e-16
     [1782,] 8.478812 0.00982388 4.677e-17
     [1783,] 8.502220 0.00979686 1.204e-16
     [1784,] 8.525693 0.00976991 1.811e-16
     [1785,] 8.549231 0.00974304 8.497e-17
     [1786,] 8.572833 0.00971624 1.501e-16
     [1787,] 8.596501 0.00968951 5.23e-17
     [1788,] 8.620234 0.00966286 1.735e-16
     [1789,] 8.644032 0.00963628 4.978e-17
     [1790,] 8.667896 0.00960977 1.398e-17
     [1791,] 8.691827 0.00958334 1.379e-16
     [1792,] 8.715823 0.00955698 1.98e-16
     [1793,] 8.739885 0.00953069 1.847e-16
     [1794,] 8.764014 0.00950447 1.555e-16
     [1795,] 8.788209 0.00947832 6.017e-17
     [1796,] 8.812472 0.00945225 1.039e-16
     [1797,] 8.836801 0.00942625 -1.388e-17
     [1798,] 8.861197 0.00940032 2.376e-17
     [1799,] 8.885661 0.00937446 6.669e-17
     [1800,] 8.910192 0.00934867 1.162e-16
     [1801,] 8.934791 0.00932296 -1.462e-17
     [1802,] 8.959458 0.00929731 5.874e-19
     [1803,] 8.984193 0.00927173 -5.881e-17
     [1804,] 9.008996 0.00924623 -2.404e-17
     [1805,] 9.033868 0.00922079 1.485e-16
     [1806,] 9.058809 0.00919543 1.256e-16
     [1807,] 9.083818 0.00917013 -3.139e-17
     [1808,] 9.108896 0.00914490 8.469e-17
     [1809,] 9.134044 0.00911975 -6.71e-19
     [1810,] 9.159261 0.00909466 1.242e-17
     [1811,] 9.184548 0.00906964 3.433e-18
     [1812,] 9.209904 0.00904469 -3.947e-17
     [1813,] 9.235330 0.00901980 -4.689e-17
     [1814,] 9.260827 0.00899499 1.167e-16
     [1815,] 9.286394 0.00897024 5.882e-17
     [1816,] 9.312032 0.00894557 1.5e-17
     [1817,] 9.337740 0.00892096 -1.168e-16
     [1818,] 9.363519 0.00889641 1.749e-17
     [1819,] 9.389370 0.00887194 -1.304e-16
     [1820,] 9.415292 0.00884753 -3.264e-17
     [1821,] 9.441285 0.00882319 -2.846e-17
     [1822,] 9.467351 0.00879892 -1.343e-16
     [1823,] 9.493488 0.00877471 2.75e-17
     [1824,] 9.519697 0.00875057 1.389e-17
     [1825,] 9.545979 0.00872650 -9.471e-18
     [1826,] 9.572333 0.00870249 -1.314e-17
     [1827,] 9.598760 0.00867855 7.487e-17
     [1828,] 9.625260 0.00865467 1.187e-17
     [1829,] 9.651833 0.00863086 -1.369e-16
     [1830,] 9.678480 0.00860711 -3.837e-17
     [1831,] 9.705200 0.00858343 -2.653e-17
     [1832,] 9.731994 0.00855982 1.415e-16
     [1833,] 9.758861 0.00853627 8.007e-17
     [1834,] 9.785803 0.00851278 -1.995e-17
     [1835,] 9.812820 0.00848936 -8.4e-17
     [1836,] 9.839911 0.00846600 -1.04e-17
     [1837,] 9.867076 0.00844271 -3.402e-17
     [1838,] 9.894317 0.00841948 -1.135e-16
     [1839,] 9.921633 0.00839632 -2.318e-17
     [1840,] 9.949025 0.00837322 4.748e-17
     [1841,] 9.976492 0.00835018 -6.795e-17
     [1842,] 1.000403e+01 0.00832721 3.842e-17
     [1843,] 1.003165e+01 0.00830430 4.107e-17
     [1844,] 1.005935e+01 0.00828145 9.206e-17
     [1845,] 1.008712e+01 0.00825866 -1.059e-16
     [1846,] 1.011497e+01 0.00823594 -5.163e-17
     [1847,] 1.014289e+01 0.00821328 -5.503e-17
     [1848,] 1.017090e+01 0.00819068 6.677e-17
     [1849,] 1.019897e+01 0.00816814 -1.815e-16
     [1850,] 1.022713e+01 0.00814567 7.084e-17
     [1851,] 1.025537e+01 0.00812326 -1.878e-17
     [1852,] 1.028368e+01 0.00810091 -5.638e-17
     [1853,] 1.031207e+01 0.00807862 6.926e-18
     [1854,] 1.034054e+01 0.00805639 -9.775e-17
     [1855,] 1.036909e+01 0.00803422 -5.051e-17
     [1856,] 1.039771e+01 0.00801212 -1.397e-16
     [1857,] 1.042642e+01 0.00799007 -1.683e-17
     [1858,] 1.045520e+01 0.00796809 8.494e-17
     [1859,] 1.048407e+01 0.00794616 -5.612e-17
     [1860,] 1.051301e+01 0.00792430 5.178e-17
     [1861,] 1.054204e+01 0.00790250 3.639e-17
     [1862,] 1.057114e+01 0.00788075 -1.239e-16
     [1863,] 1.060033e+01 0.00785907 -5.24e-17
     [1864,] 1.062959e+01 0.00783744 -1.61e-16
     [1865,] 1.065894e+01 0.00781588 -1.936e-16
     [1866,] 1.068836e+01 0.00779437 -1.577e-16
     [1867,] 1.071787e+01 0.00777292 2.622e-18
     [1868,] 1.074746e+01 0.00775154 -5.205e-17
     [1869,] 1.077713e+01 0.00773021 -1.411e-16
     [1870,] 1.080689e+01 0.00770894 -1.529e-16
     [1871,] 1.083672e+01 0.00768773 -5.368e-17
     [1872,] 1.086664e+01 0.00766657 -7.389e-17
     [1873,] 1.089664e+01 0.00764548 -1.113e-16
     [1874,] 1.092672e+01 0.00762444 -5.381e-17
     [1875,] 1.095689e+01 0.00760346 -8.969e-17
     [1876,] 1.098714e+01 0.00758254 -4.332e-17
     [1877,] 1.101747e+01 0.00756167 -3.428e-17
     [1878,] 1.104789e+01 0.00754086 1.961e-17
     [1879,] 1.107839e+01 0.00752011 -1.036e-16
     [1880,] 1.110897e+01 0.00749942 -6.48e-17
     [1881,] 1.113964e+01 0.00747879 -1.48e-16
     [1882,] 1.117040e+01 0.00745821 -1.848e-16
     [1883,] 1.120124e+01 0.00743768 -4.813e-17
     [1884,] 1.123216e+01 0.00741722 -1.039e-16
     [1885,] 1.126317e+01 0.00739681 -1.243e-16
     [1886,] 1.129426e+01 0.00737645 -1.41e-16
     [1887,] 1.132545e+01 0.00735615 -4.483e-17
     [1888,] 1.135671e+01 0.00733591 -3.847e-17
     [1889,] 1.138807e+01 0.00731573 -1.765e-16
     [1890,] 1.141951e+01 0.00729559 -5.919e-17
     [1891,] 1.145103e+01 0.00727552 -1.412e-16
     [1892,] 1.148265e+01 0.00725550 -1.079e-16
     [1893,] 1.151435e+01 0.00723553 -1.41e-16
     [1894,] 1.154614e+01 0.00721562 -1.136e-16
     [1895,] 1.157801e+01 0.00719577 -1.192e-16
     [1896,] 1.160998e+01 0.00717596 4.681e-17
     [1897,] 1.164203e+01 0.00715622 -1.651e-16
     [1898,] 1.167417e+01 0.00713652 -1.101e-16
     [1899,] 1.170640e+01 0.00711689 -8.113e-17
     [1900,] 1.173872e+01 0.00709730 -1.512e-16
     [1901,] 1.177113e+01 0.00707777 -1.474e-16
     [1902,] 1.180362e+01 0.00705829 -9.768e-17
     [1903,] 1.183621e+01 0.00703887 -7.933e-17
     [1904,] 1.186889e+01 0.00701950 3.457e-17
     [1905,] 1.190165e+01 0.00700018 1.787e-17
     [1906,] 1.193451e+01 0.00698092 3.691e-17
     [1907,] 1.196746e+01 0.00696171 -1.819e-17
     [1908,] 1.200050e+01 0.00694255 -1.1e-16
     [1909,] 1.203363e+01 0.00692345 2.361e-17
     [1910,] 1.206685e+01 0.00690439 4.718e-17
     [1911,] 1.210017e+01 0.00688539 -1.019e-16
     [1912,] 1.213357e+01 0.00686644 1.179e-16
     [1913,] 1.216707e+01 0.00684755 1.086e-16
     [1914,] 1.220066e+01 0.00682870 1.867e-16
     [1915,] 1.223434e+01 0.00680991 1.018e-16
     [1916,] 1.226812e+01 0.00679117 1.738e-16
     [1917,] 1.230199e+01 0.00677248 4.797e-17
     [1918,] 1.233595e+01 0.00675385 2.418e-17
     [1919,] 1.237001e+01 0.00673526 2.535e-17
     [1920,] 1.240416e+01 0.00671672 1.171e-16
     [1921,] 1.243841e+01 0.00669824 8.973e-17
     [1922,] 1.247274e+01 0.00667981 1.108e-16
     [1923,] 1.250718e+01 0.00666142 -2.753e-17
     [1924,] 1.254171e+01 0.00664309 1.31e-16
     [1925,] 1.257633e+01 0.00662481 3.372e-17
     [1926,] 1.261105e+01 0.00660658 8.811e-17
     [1927,] 1.264587e+01 0.00658840 1.354e-16
     [1928,] 1.268078e+01 0.00657026 1.844e-17
     [1929,] 1.271579e+01 0.00655218 1.096e-16
     [1930,] 1.275090e+01 0.00653415 8.427e-17
     [1931,] 1.278610e+01 0.00651617 8.817e-17
     [1932,] 1.282140e+01 0.00649824 4.359e-17
     [1933,] 1.285680e+01 0.00648035 7.854e-17
     [1934,] 1.289229e+01 0.00646252 3.333e-17
     [1935,] 1.292788e+01 0.00644473 5.688e-17
     [1936,] 1.296357e+01 0.00642700 1.234e-16
     [1937,] 1.299936e+01 0.00640931 7.49e-17
     [1938,] 1.303525e+01 0.00639167 9.276e-17
     [1939,] 1.307124e+01 0.00637408 5.967e-17
     [1940,] 1.310733e+01 0.00635654 -1.096e-16
     [1941,] 1.314351e+01 0.00633904 -1.116e-17
     [1942,] 1.317980e+01 0.00632160 6.359e-17
     [1943,] 1.321618e+01 0.00630420 -4.362e-18
     [1944,] 1.325267e+01 0.00628685 1.946e-17
     [1945,] 1.328926e+01 0.00626955 6.637e-17
     [1946,] 1.332595e+01 0.00625229 -5.855e-17
     [1947,] 1.336274e+01 0.00623508 5.636e-17
     [1948,] 1.339963e+01 0.00621793 -9.854e-17
     [1949,] 1.343662e+01 0.00620081 2.668e-17
     [1950,] 1.347372e+01 0.00618375 -1.729e-17
     [1951,] 1.351092e+01 0.00616673 -3.522e-17
     [1952,] 1.354822e+01 0.00614976 -2.041e-17
     [1953,] 1.358562e+01 0.00613283 1.176e-17
     [1954,] 1.362313e+01 0.00611595 -4.01e-17
     [1955,] 1.366074e+01 0.00609912 -8.449e-17
     [1956,] 1.369845e+01 0.00608233 6.346e-17
     [1957,] 1.373627e+01 0.00606559 1.837e-17
     [1958,] 1.377419e+01 0.00604890 -3.592e-17
     [1959,] 1.381222e+01 0.00603225 -8.856e-18
     [1960,] 1.385035e+01 0.00601565 -6.647e-17
     [1961,] 1.388859e+01 0.00599909 3.621e-18
     [1962,] 1.392693e+01 0.00598258 -6.722e-17
     [1963,] 1.396538e+01 0.00596612 -9.877e-17
     [1964,] 1.400394e+01 0.00594970 -2.662e-17
     [1965,] 1.404260e+01 0.00593332 2.319e-17
     [1966,] 1.408137e+01 0.00591699 -7.307e-17
     [1967,] 1.412024e+01 0.00590071 6.137e-17
     [1968,] 1.415922e+01 0.00588447 -3.574e-17
     [1969,] 1.419832e+01 0.00586827 -3.63e-17
     [1970,] 1.423751e+01 0.00585212 -5.372e-17
     [1971,] 1.427682e+01 0.00583601 -8.689e-17
     [1972,] 1.431624e+01 0.00581995 -4.634e-17
     [1973,] 1.435576e+01 0.00580393 -5.897e-17
     [1974,] 1.439539e+01 0.00578796 -7.167e-17
     [1975,] 1.443513e+01 0.00577203 6.173e-17
     [1976,] 1.447499e+01 0.00575614 -4.044e-17
     [1977,] 1.451495e+01 0.00574030 2.463e-17
     [1978,] 1.455502e+01 0.00572450 -6.677e-17
     [1979,] 1.459520e+01 0.00570875 -6.493e-17
     [1980,] 1.463550e+01 0.00569303 -3.427e-17
     [1981,] 1.467590e+01 0.00567736 -1.003e-17
     [1982,] 1.471642e+01 0.00566174 -5.983e-17
     [1983,] 1.475705e+01 0.00564616 2.222e-17
     [1984,] 1.479779e+01 0.00563062 2.28e-17
     [1985,] 1.483864e+01 0.00561512 -1.098e-16
     [1986,] 1.487961e+01 0.00559966 -7.868e-18
     [1987,] 1.492069e+01 0.00558425 -6.327e-17
     [1988,] 1.496188e+01 0.00556888 -1.04e-16
     [1989,] 1.500319e+01 0.00555355 2.548e-17
     [1990,] 1.504461e+01 0.00553827 -7.335e-17
     [1991,] 1.508614e+01 0.00552303 -1.296e-17
     [1992,] 1.512779e+01 0.00550782 -3.03e-17
     [1993,] 1.516956e+01 0.00549266 7.078e-17
     [1994,] 1.521144e+01 0.00547755 -4.144e-18
     [1995,] 1.525343e+01 0.00546247 1.816e-18
     [1996,] 1.529554e+01 0.00544744 3.829e-17
     [1997,] 1.533777e+01 0.00543244 -5.778e-17
     [1998,] 1.538011e+01 0.00541749 1.961e-17
     [1999,] 1.542257e+01 0.00540258 1.976e-17
     [2000,] 1.546515e+01 0.00538771 8.565e-17
     [2001,] 1.550785e+01 0.00537288 -5.308e-17
     [2002,] 1.555066e+01 0.00535809 -8.871e-17
     [2003,] 1.559359e+01 0.00534334 3.356e-17
     [2004,] 1.563664e+01 0.00532864 -1.687e-16
     [2005,] 1.567981e+01 0.00531397 -9.577e-18
     [2006,] 1.572310e+01 0.00529934 -4.947e-17
     [2007,] 1.576651e+01 0.00528476 -1.163e-16
     [2008,] 1.581004e+01 0.00527021 -2.078e-17
     [2009,] 1.585369e+01 0.00525570 4.32e-17
     [2010,] 1.589745e+01 0.00524124 1.276e-18
     [2011,] 1.594134e+01 0.00522681 8.286e-17
     [2012,] 1.598535e+01 0.00521243 4.246e-18
     [2013,] 1.602949e+01 0.00519808 -8.425e-17
     [2014,] 1.607374e+01 0.00518377 1.77e-17
     [2015,] 1.611812e+01 0.00516950 -1.656e-16
     [2016,] 1.616261e+01 0.00515527 4.461e-17
     [2017,] 1.620724e+01 0.00514108 -9.962e-17
     [2018,] 1.625198e+01 0.00512693 -6.854e-17
     [2019,] 1.629685e+01 0.00511282 -1.134e-16
     [2020,] 1.634184e+01 0.00509875 4.852e-17
     [2021,] 1.638696e+01 0.00508472 -5.987e-17
     [2022,] 1.643220e+01 0.00507072 -1.361e-16
     [2023,] 1.647756e+01 0.00505676 -5.319e-18
     [2024,] 1.652305e+01 0.00504284 -1.526e-17
     [2025,] 1.656867e+01 0.00502896 4.312e-17
     [2026,] 1.661441e+01 0.00501512 -8.638e-17
     [2027,] 1.666028e+01 0.00500132 -1.513e-16
     [2028,] 1.670628e+01 0.00498755 3.846e-17
     [2029,] 1.675240e+01 0.00497382 -9.375e-17
     [2030,] 1.679865e+01 0.00496013 5.155e-18
     [2031,] 1.684502e+01 0.00494648 -7.903e-17
     [2032,] 1.689153e+01 0.00493286 -6.641e-17
     [2033,] 1.693816e+01 0.00491929 -5.549e-17
     [2034,] 1.698493e+01 0.00490575 -2.278e-18
     [2035,] 1.703182e+01 0.00489224 3.901e-17
     [2036,] 1.707884e+01 0.00487878 -9.192e-17
     [2037,] 1.712599e+01 0.00486535 -4.879e-18
     [2038,] 1.717327e+01 0.00485195 9.207e-17
     [2039,] 1.722068e+01 0.00483860 -5.966e-17
     [2040,] 1.726822e+01 0.00482528 9.654e-17
     [2041,] 1.731590e+01 0.00481200 9.568e-17
     [2042,] 1.736370e+01 0.00479875 -1.056e-17
     [2043,] 1.741164e+01 0.00478554 -7.328e-18
     [2044,] 1.745971e+01 0.00477237 -9.762e-17
     [2045,] 1.750791e+01 0.00475924 -1.138e-17
     [2046,] 1.755625e+01 0.00474614 -1.058e-16
     [2047,] 1.760472e+01 0.00473307 -5.018e-17
     [2048,] 1.765332e+01 0.00472004 4.424e-17
     [2049,] 1.770205e+01 0.00470705 -6.861e-18
     [2050,] 1.775093e+01 0.00469409 -5.499e-17
     [2051,] 1.779993e+01 0.00468117 4.379e-17
     [2052,] 1.784907e+01 0.00466829 -8.447e-17
     [2053,] 1.789835e+01 0.00465544 4.407e-17
     [2054,] 1.794776e+01 0.00464262 1.823e-17
     [2055,] 1.799731e+01 0.00462984 -3.046e-17
     [2056,] 1.804700e+01 0.00461710 -7.409e-17
     [2057,] 1.809682e+01 0.00460439 -1.609e-17
     [2058,] 1.814679e+01 0.00459172 -3.871e-17
     [2059,] 1.819688e+01 0.00457908 -1.089e-16
     [2060,] 1.824712e+01 0.00456647 -5.247e-17
     [2061,] 1.829750e+01 0.00455390 5.46e-17
     [2062,] 1.834801e+01 0.00454137 -2.091e-16
     [2063,] 1.839867e+01 0.00452887 -2.247e-17
     [2064,] 1.844946e+01 0.00451640 -4.334e-17
     [2065,] 1.850040e+01 0.00450397 -4.428e-17
     [2066,] 1.855147e+01 0.00449157 -5.642e-17
     [2067,] 1.860269e+01 0.00447921 -7.311e-17
     [2068,] 1.865405e+01 0.00446688 -8.131e-18
     [2069,] 1.870555e+01 0.00445458 -1.434e-16
     [2070,] 1.875719e+01 0.00444232 -7.461e-17
     [2071,] 1.880897e+01 0.00443009 -9.759e-17
     [2072,] 1.886090e+01 0.00441790 -1.179e-16
     [2073,] 1.891297e+01 0.00440574 -4.526e-17
     [2074,] 1.896518e+01 0.00439361 2.184e-19
     [2075,] 1.901754e+01 0.00438152 5.326e-17
     [2076,] 1.907005e+01 0.00436945 -2.399e-17
     [2077,] 1.912269e+01 0.00435743 5.05e-17
     [2078,] 1.917549e+01 0.00434543 6.714e-17
     [2079,] 1.922843e+01 0.00433347 -2.294e-17
     [2080,] 1.928151e+01 0.00432154 -4.095e-17
     [2081,] 1.933474e+01 0.00430965 3.615e-18
     [2082,] 1.938812e+01 0.00429778 -4.997e-17
     [2083,] 1.944165e+01 0.00428595 1.603e-17
     [2084,] 1.949532e+01 0.00427415 -1.55e-16
     [2085,] 1.954914e+01 0.00426239 2.996e-18
     [2086,] 1.960312e+01 0.00425066 -1.804e-16
     [2087,] 1.965724e+01 0.00423896 -1.229e-16
     [2088,] 1.971150e+01 0.00422729 -6.969e-17
     [2089,] 1.976592e+01 0.00421565 -6.985e-17
     [2090,] 1.982049e+01 0.00420405 2.186e-17
     [2091,] 1.987521e+01 0.00419247 -1.474e-16
     [2092,] 1.993008e+01 0.00418093 -1.239e-16
     [2093,] 1.998511e+01 0.00416942 -1.582e-16
     [2094,] 2.004028e+01 0.00415795 -6.694e-17
     [2095,] 2.009561e+01 0.00414650 7.511e-17
     [2096,] 2.015109e+01 0.00413509 -6.268e-17
     [2097,] 2.020672e+01 0.00412370 1.875e-17
     [2098,] 2.026250e+01 0.00411235 -1.766e-17
     [2099,] 2.031844e+01 0.00410103 -5.18e-17
     [2100,] 2.037454e+01 0.00408974 -1.407e-16
     [2101,] 2.043079e+01 0.00407849 -1.125e-16
     [2102,] 2.048719e+01 0.00406726 5.148e-17
     [2103,] 2.054375e+01 0.00405606 4.047e-17
     [2104,] 2.060047e+01 0.00404490 -1.725e-16
     [2105,] 2.065734e+01 0.00403376 2.665e-17
     [2106,] 2.071437e+01 0.00402266 -1.389e-16
     [2107,] 2.077156e+01 0.00401159 -1.57e-17
     [2108,] 2.082891e+01 0.00400054 -6.89e-17
     [2109,] 2.088641e+01 0.00398953 -1.549e-16
     [2110,] 2.094407e+01 0.00397855 -1.169e-16
     [2111,] 2.100190e+01 0.00396760 -8.91e-17
     [2112,] 2.105988e+01 0.00395667 -1.527e-16
     [2113,] 2.111802e+01 0.00394578 5.34e-17
     [2114,] 2.117632e+01 0.00393492 -1.643e-16
     [2115,] 2.123478e+01 0.00392409 -4.449e-17
     [2116,] 2.129341e+01 0.00391329 -4.027e-17
     [2117,] 2.135219e+01 0.00390251 4.295e-17
     [2118,] 2.141114e+01 0.00389177 -8.417e-17
     [2119,] 2.147025e+01 0.00388106 -1.911e-16
     [2120,] 2.152953e+01 0.00387037 -9.326e-17
     [2121,] 2.158897e+01 0.00385972 -4.279e-17
     [2122,] 2.164857e+01 0.00384910 -4.157e-17
     [2123,] 2.170834e+01 0.00383850 -6.067e-17
     [2124,] 2.176827e+01 0.00382793 -8.553e-17
     [2125,] 2.182836e+01 0.00381740 -2.351e-17
     [2126,] 2.188863e+01 0.00380689 -9.314e-17
     [2127,] 2.194906e+01 0.00379641 -1.359e-16
     [2128,] 2.200965e+01 0.00378596 -4.672e-17
     [2129,] 2.207042e+01 0.00377554 -6.789e-17
     [2130,] 2.213135e+01 0.00376514 6.365e-17
     [2131,] 2.219245e+01 0.00375478 -2.138e-17
     [2132,] 2.225372e+01 0.00374444 -2.914e-17
     [2133,] 2.231515e+01 0.00373413 -6.994e-17
     [2134,] 2.237676e+01 0.00372385 -7.138e-17
     [2135,] 2.243854e+01 0.00371360 -1.166e-16
     [2136,] 2.250049e+01 0.00370338 4.907e-17
     [2137,] 2.256260e+01 0.00369319 -7.081e-17
     [2138,] 2.262489e+01 0.00368302 -3.132e-17
     [2139,] 2.268736e+01 0.00367288 -7.837e-17
     [2140,] 2.274999e+01 0.00366277 -9.555e-17
     [2141,] 2.281280e+01 0.00365269 -2.441e-17
     [2142,] 2.287578e+01 0.00364263 -4.813e-17
     [2143,] 2.293893e+01 0.00363260 -1.165e-16
     [2144,] 2.300226e+01 0.00362260 -1.018e-17
     [2145,] 2.306577e+01 0.00361263 3.425e-18
     [2146,] 2.312945e+01 0.00360269 -1.685e-16
     [2147,] 2.319330e+01 0.00359277 -1.099e-16
     [2148,] 2.325733e+01 0.00358288 -3.564e-18
     [2149,] 2.332154e+01 0.00357302 -4.508e-17
     [2150,] 2.338593e+01 0.00356318 2.835e-18
     [2151,] 2.345049e+01 0.00355337 4.677e-17
     [2152,] 2.351523e+01 0.00354359 4.844e-17
     [2153,] 2.358015e+01 0.00353383 -1.366e-16
     [2154,] 2.364525e+01 0.00352411 -8.592e-17
     [2155,] 2.371053e+01 0.00351440 -1.547e-16
     [2156,] 2.377599e+01 0.00350473 -1.053e-16
     [2157,] 2.384163e+01 0.00349508 -4.442e-17
     [2158,] 2.390745e+01 0.00348546 2.99e-18
     [2159,] 2.397345e+01 0.00347587 -1.129e-16
     [2160,] 2.403964e+01 0.00346630 -4.258e-17
     [2161,] 2.410601e+01 0.00345675 6.679e-18
     [2162,] 2.417256e+01 0.00344724 -2.349e-17
     [2163,] 2.423929e+01 0.00343775 2.775e-17
     [2164,] 2.430621e+01 0.00342829 -1.131e-16
     [2165,] 2.437332e+01 0.00341885 -5.189e-17
     [2166,] 2.444061e+01 0.00340944 -1.187e-16
     [2167,] 2.450808e+01 0.00340005 -1.377e-16
     [2168,] 2.457574e+01 0.00339069 -1.64e-19
     [2169,] 2.464359e+01 0.00338136 -8.768e-17
     [2170,] 2.471163e+01 0.00337205 -1.403e-17
     [2171,] 2.477985e+01 0.00336277 -2.984e-17
     [2172,] 2.484826e+01 0.00335351 -8.605e-17
     [2173,] 2.491686e+01 0.00334428 -9.324e-18
     [2174,] 2.498565e+01 0.00333507 -3.401e-17
     [2175,] 2.505463e+01 0.00332589 8.481e-18
     [2176,] 2.512380e+01 0.00331673 1.999e-17
     [2177,] 2.519316e+01 0.00330760 1.05e-18
     [2178,] 2.526271e+01 0.00329850 -2.739e-17
     [2179,] 2.533246e+01 0.00328942 -1.365e-16
     [2180,] 2.540239e+01 0.00328036 2.648e-17
     [2181,] 2.547253e+01 0.00327133 -4.905e-17
     [2182,] 2.554285e+01 0.00326233 2.933e-17
     [2183,] 2.561337e+01 0.00325334 -1.061e-16
     [2184,] 2.568408e+01 0.00324439 -2.654e-17
     [2185,] 2.575499e+01 0.00323546 -1.053e-16
     [2186,] 2.582609e+01 0.00322655 -8.629e-17
     [2187,] 2.589739e+01 0.00321767 -9.268e-17
     [2188,] 2.596889e+01 0.00320881 -8.183e-17
     [2189,] 2.604058e+01 0.00319998 1.218e-16
     [2190,] 2.611247e+01 0.00319117 6.462e-17
     [2191,] 2.618456e+01 0.00318238 2.518e-17
     [2192,] 2.625685e+01 0.00317362 1.648e-16
     [2193,] 2.632934e+01 0.00316488 2.768e-17
     [2194,] 2.640203e+01 0.00315617 4.795e-17
     [2195,] 2.647492e+01 0.00314748 -1.098e-17
     [2196,] 2.654801e+01 0.00313882 1.076e-16
     [2197,] 2.662131e+01 0.00313018 1.704e-17
     [2198,] 2.669480e+01 0.00312156 4.75e-17
     [2199,] 2.676850e+01 0.00311297 1.373e-17
     [2200,] 2.684240e+01 0.00310440 4.923e-17
     [2201,] 2.691651e+01 0.00309585 1.201e-16
     [2202,] 2.699082e+01 0.00308733 6.537e-17
     [2203,] 2.706533e+01 0.00307883 -7.665e-18
     [2204,] 2.714005e+01 0.00307035 5.204e-17
     [2205,] 2.721498e+01 0.00306190 1.153e-16
     [2206,] 2.729012e+01 0.00305347 4.451e-17
     [2207,] 2.736546e+01 0.00304507 6.581e-18
     [2208,] 2.744101e+01 0.00303668 4.644e-17
     [2209,] 2.751677e+01 0.00302832 1.103e-17
     [2210,] 2.759273e+01 0.00301999 -6.08e-18
     [2211,] 2.766891e+01 0.00301167 -8.728e-17
     [2212,] 2.774530e+01 0.00300338 1.481e-17
     [2213,] 2.782190e+01 0.00299511 2.168e-17
     [2214,] 2.789871e+01 0.00298687 3.874e-17
     [2215,] 2.797573e+01 0.00297865 -4.506e-17
     [2216,] 2.805296e+01 0.00297045 1.053e-16
     [2217,] 2.813041e+01 0.00296227 3.741e-17
     [2218,] 2.820807e+01 0.00295411 -5.342e-18
     [2219,] 2.828595e+01 0.00294598 -4.346e-17
     [2220,] 2.836404e+01 0.00293787 5.427e-17
     [2221,] 2.844235e+01 0.00292978 -5.033e-17
     [2222,] 2.852087e+01 0.00292172 -6.135e-17
     [2223,] 2.859961e+01 0.00291367 -1.614e-17
     [2224,] 2.867857e+01 0.00290565 5.261e-18
     [2225,] 2.875774e+01 0.00289765 -2.021e-17
     [2226,] 2.883713e+01 0.00288968 -5.45e-17
     [2227,] 2.891675e+01 0.00288172 1.151e-17
     [2228,] 2.899658e+01 0.00287379 9.315e-17
     [2229,] 2.907663e+01 0.00286588 -7.411e-17
     [2230,] 2.915691e+01 0.00285799 -2.017e-17
     [2231,] 2.923740e+01 0.00285012 -6.915e-17
     [2232,] 2.931812e+01 0.00284227 -2.813e-17
     [2233,] 2.939906e+01 0.00283445 -1.071e-16
     [2234,] 2.948023e+01 0.00282665 -3.233e-17
     [2235,] 2.956161e+01 0.00281886 -2.179e-17
     [2236,] 2.964323e+01 0.00281110 -1.217e-16
     [2237,] 2.972506e+01 0.00280336 -8.537e-18
     [2238,] 2.980713e+01 0.00279565 -4.305e-17
     [2239,] 2.988942e+01 0.00278795 -1.258e-16
     [2240,] 2.997194e+01 0.00278028 -3.687e-17
     [2241,] 3.005468e+01 0.00277262 -3.231e-17
     [2242,] 3.013766e+01 0.00276499 -3.671e-17
     [2243,] 3.022086e+01 0.00275738 -3.72e-17
     [2244,] 3.030429e+01 0.00274979 -6.451e-17
     [2245,] 3.038796e+01 0.00274222 -1.17e-17
     [2246,] 3.047185e+01 0.00273467 -8.929e-17
     [2247,] 3.055598e+01 0.00272714 -1.893e-17
     [2248,] 3.064033e+01 0.00271963 -1.015e-17
     [2249,] 3.072493e+01 0.00271214 3.771e-17
     [2250,] 3.080975e+01 0.00270468 -4.964e-17
     [2251,] 3.089481e+01 0.00269723 -8.525e-17
     [2252,] 3.098010e+01 0.00268981 -4.72e-17
     [2253,] 3.106563e+01 0.00268240 -7.534e-17
     [2254,] 3.115140e+01 0.00267502 -4.191e-17
     [2255,] 3.123740e+01 0.00266765 9.497e-17
     [2256,] 3.132364e+01 0.00266031 -2.907e-17
     [2257,] 3.141011e+01 0.00265298 -8.831e-17
     [2258,] 3.149683e+01 0.00264568 -2.764e-17
     [2259,] 3.158379e+01 0.00263840 7.611e-17
     [2260,] 3.167098e+01 0.00263113 7.766e-17
     [2261,] 3.175842e+01 0.00262389 3.568e-18
     [2262,] 3.184610e+01 0.00261667 3.795e-17
     [2263,] 3.193402e+01 0.00260946 -1.1e-17
     [2264,] 3.202218e+01 0.00260228 -8.342e-17
     [2265,] 3.211058e+01 0.00259511 2.524e-17
     [2266,] 3.219923e+01 0.00258797 -4.66e-17
     [2267,] 3.228813e+01 0.00258085 -1.36e-17
     [2268,] 3.237727e+01 0.00257374 -4.279e-17
     [2269,] 3.246666e+01 0.00256665 5.09e-17
     [2270,] 3.255629e+01 0.00255959 -7.992e-17
     [2271,] 3.264617e+01 0.00255254 2.909e-17
     [2272,] 3.273630e+01 0.00254552 -1.572e-16
     [2273,] 3.282667e+01 0.00253851 4.271e-17
     [2274,] 3.291730e+01 0.00253152 -2.854e-17
     [2275,] 3.300818e+01 0.00252455 5.583e-18
     [2276,] 3.309931e+01 0.00251760 -2.906e-17
     [2277,] 3.319069e+01 0.00251067 -4.839e-17
     [2278,] 3.328232e+01 0.00250376 -2.273e-17
     [2279,] 3.337420e+01 0.00249686 -4.306e-17
     [2280,] 3.346634e+01 0.00248999 3.861e-17
     [2281,] 3.355873e+01 0.00248313 -9.458e-17
     [2282,] 3.365138e+01 0.00247630 -2.456e-17
     [2283,] 3.374429e+01 0.00246948 -1.805e-16
     [2284,] 3.383745e+01 0.00246268 -8.978e-17
     [2285,] 3.393086e+01 0.00245590 -6.711e-17
     [2286,] 3.402454e+01 0.00244914 -9.753e-17
     [2287,] 3.411847e+01 0.00244240 -4.09e-18
     [2288,] 3.421267e+01 0.00243568 5.76e-17
     [2289,] 3.430712e+01 0.00242897 -2.455e-17
     [2290,] 3.440183e+01 0.00242228 -3.033e-17
     [2291,] 3.449681e+01 0.00241561 -7.576e-17
     [2292,] 3.459205e+01 0.00240896 -3.059e-17
     [2293,] 3.468755e+01 0.00240233 -4.707e-17
     [2294,] 3.478331e+01 0.00239572 3.708e-17
     [2295,] 3.487934e+01 0.00238912 -4.686e-17
     [2296,] 3.497564e+01 0.00238255 -1.862e-16
     [2297,] 3.507220e+01 0.00237599 -6.801e-17
     [2298,] 3.516902e+01 0.00236945 -7.62e-17
     [2299,] 3.526612e+01 0.00236292 -1.653e-16
     [2300,] 3.536348e+01 0.00235642 -5.476e-17
     [2301,] 3.546111e+01 0.00234993 -1.205e-16
     [2302,] 3.555901e+01 0.00234346 -1.45e-16
     [2303,] 3.565718e+01 0.00233701 2.021e-17
     [2304,] 3.575562e+01 0.00233058 -4.427e-17
     [2305,] 3.585433e+01 0.00232416 -9.023e-17
     [2306,] 3.595332e+01 0.00231776 -5.832e-17
     [2307,] 3.605258e+01 0.00231138 5.376e-17
     [2308,] 3.615211e+01 0.00230502 -7.402e-17
     [2309,] 3.625192e+01 0.00229867 -9.507e-17
     [2310,] 3.635200e+01 0.00229234 -8.045e-19
     [2311,] 3.645236e+01 0.00228603 -4.437e-17
     [2312,] 3.655300e+01 0.00227974 -1.325e-16
     [2313,] 3.665391e+01 0.00227346 -6.386e-17
     [2314,] 3.675510e+01 0.00226720 -9.045e-17
     [2315,] 3.685658e+01 0.00226096 -4.852e-17
     [2316,] 3.695833e+01 0.00225474 -9.879e-17
     [2317,] 3.706036e+01 0.00224853 -5.745e-17
     [2318,] 3.716268e+01 0.00224234 3.559e-17
     [2319,] 3.726528e+01 0.00223617 5.349e-18
     [2320,] 3.736816e+01 0.00223001 -7.775e-17
     [2321,] 3.747132e+01 0.00222387 -1.1e-17
     [2322,] 3.757477e+01 0.00221775 -5.865e-17
     [2323,] 3.767851e+01 0.00221164 9.688e-17
     [2324,] 3.778253e+01 0.00220555 -4.933e-17
     [2325,] 3.788684e+01 0.00219948 1.212e-17
     [2326,] 3.799143e+01 0.00219343 -2.15e-17
     [2327,] 3.809632e+01 0.00218739 -1.773e-17
     [2328,] 3.820149e+01 0.00218137 -8.213e-17
     [2329,] 3.830696e+01 0.00217536 -2.469e-17
     [2330,] 3.841272e+01 0.00216937 -7.347e-17
     [2331,] 3.851877e+01 0.00216340 4.199e-17
     [2332,] 3.862511e+01 0.00215744 8.965e-17
     [2333,] 3.873174e+01 0.00215150 -1.064e-16
     [2334,] 3.883867e+01 0.00214558 -6.232e-17
     [2335,] 3.894590e+01 0.00213967 2.863e-17
     [2336,] 3.905342e+01 0.00213378 -1.534e-17
     [2337,] 3.916124e+01 0.00212791 -3.466e-17
     [2338,] 3.926935e+01 0.00212205 3.321e-17
     [2339,] 3.937776e+01 0.00211621 3.2e-17
     [2340,] 3.948648e+01 0.00211038 -1.554e-16
     [2341,] 3.959549e+01 0.00210457 -9.186e-17
     [2342,] 3.970480e+01 0.00209878 -3.003e-18
     [2343,] 3.981442e+01 0.00209300 -4.888e-17
     [2344,] 3.992434e+01 0.00208724 -1.911e-16
     [2345,] 4.003456e+01 0.00208149 3.572e-18
     [2346,] 4.014509e+01 0.00207576 1.978e-17
     [2347,] 4.025592e+01 0.00207005 -1.718e-16
     [2348,] 4.036706e+01 0.00206435 -1.85e-16
     [2349,] 4.047850e+01 0.00205866 -6.535e-17
     [2350,] 4.059025e+01 0.00205300 7.443e-17
     [2351,] 4.070231e+01 0.00204734 -6.399e-17
     [2352,] 4.081468e+01 0.00204171 -1.907e-16
     [2353,] 4.092736e+01 0.00203609 -5.896e-17
     [2354,] 4.104035e+01 0.00203048 -8.96e-17
     [2355,] 4.115366e+01 0.00202489 1.891e-17
     [2356,] 4.126727e+01 0.00201932 -1.18e-16
     [2357,] 4.138120e+01 0.00201376 8.747e-17
     [2358,] 4.149545e+01 0.00200821 -9.397e-17
     [2359,] 4.161001e+01 0.00200268 -1.249e-16
     [2360,] 4.172488e+01 0.00199717 -8.298e-17
     [2361,] 4.184007e+01 0.00199167 -4.828e-17
     [2362,] 4.195558e+01 0.00198619 -1.513e-16
     [2363,] 4.207141e+01 0.00198072 -1.104e-16
     [2364,] 4.218756e+01 0.00197527 -8.707e-17
     [2365,] 4.230403e+01 0.00196983 -1.637e-16
     [2366,] 4.242083e+01 0.00196441 4.353e-19
     [2367,] 4.253794e+01 0.00195900 -4.531e-17
     [2368,] 4.265538e+01 0.00195361 -1.151e-16
     [2369,] 4.277314e+01 0.00194823 -7.655e-17
     [2370,] 4.289123e+01 0.00194286 -1.004e-16
     [2371,] 4.300964e+01 0.00193752 -5.017e-17
     [2372,] 4.312838e+01 0.00193218 -2.767e-17
     [2373,] 4.324745e+01 0.00192686 -8.31e-17
     [2374,] 4.336684e+01 0.00192156 -2.787e-17
     [2375,] 4.348657e+01 0.00191627 -8.455e-17
     [2376,] 4.360663e+01 0.00191099 -1.119e-16
     [2377,] 4.372701e+01 0.00190573 -4.032e-19
     [2378,] 4.384773e+01 0.00190048 -6.838e-17
     [2379,] 4.396879e+01 0.00189525 -5.94e-17
     [2380,] 4.409017e+01 0.00189003 -2.72e-17
     [2381,] 4.421190e+01 0.00188483 -6.983e-17
     [2382,] 4.433396e+01 0.00187964 -8.976e-17
     [2383,] 4.445635e+01 0.00187447 2.921e-17
     [2384,] 4.457909e+01 0.00186931 4.081e-17
     [2385,] 4.470216e+01 0.00186416 -5.437e-17
     [2386,] 4.482557e+01 0.00185903 -2.424e-17
     [2387,] 4.494932e+01 0.00185391 -3.072e-17
     [2388,] 4.507342e+01 0.00184881 -1.505e-16
     [2389,] 4.519786e+01 0.00184372 -1.201e-16
     [2390,] 4.532264e+01 0.00183864 2.256e-17
     [2391,] 4.544776e+01 0.00183358 -5.134e-18
     [2392,] 4.557323e+01 0.00182853 -1.244e-17
     [2393,] 4.569905e+01 0.00182350 -1.71e-16
     [2394,] 4.582522e+01 0.00181848 6.132e-18
     [2395,] 4.595173e+01 0.00181347 3.018e-17
     [2396,] 4.607859e+01 0.00180848 6.678e-18
     [2397,] 4.620580e+01 0.00180350 1.537e-17
     [2398,] 4.633337e+01 0.00179853 -9.952e-17
     [2399,] 4.646128e+01 0.00179358 -7.682e-17
     [2400,] 4.658955e+01 0.00178864 -6.646e-18
     [2401,] 4.671818e+01 0.00178372 -1.478e-17
     [2402,] 4.684715e+01 0.00177881 -6.126e-17
     [2403,] 4.697649e+01 0.00177391 -1.357e-16
     [2404,] 4.710618e+01 0.00176903 -7.605e-17
     [2405,] 4.723623e+01 0.00176416 -2.897e-17
     [2406,] 4.736664e+01 0.00175930 -1.203e-16
     [2407,] 4.749741e+01 0.00175446 1.618e-17
     [2408,] 4.762853e+01 0.00174963 2.009e-17
     [2409,] 4.776003e+01 0.00174481 -5.898e-17
     [2410,] 4.789188e+01 0.00174001 -9.236e-17
     [2411,] 4.802410e+01 0.00173521 -3.045e-17
     [2412,] 4.815668e+01 0.00173044 -7.709e-17
     [2413,] 4.828963e+01 0.00172567 -1.043e-16
     [2414,] 4.842295e+01 0.00172092 1.08e-17
     [2415,] 4.855663e+01 0.00171618 -1.095e-16
     [2416,] 4.869069e+01 0.00171146 -3.981e-17
     [2417,] 4.882511e+01 0.00170675 -1.384e-17
     [2418,] 4.895991e+01 0.00170205 -3.016e-17
     [2419,] 4.909507e+01 0.00169736 6.357e-18
     [2420,] 4.923061e+01 0.00169269 -1.772e-17
     [2421,] 4.936653e+01 0.00168803 -6.412e-17
     [2422,] 4.950282e+01 0.00168338 -1.565e-16
     [2423,] 4.963948e+01 0.00167875 -1.499e-16
     [2424,] 4.977653e+01 0.00167413 -3.524e-17
     [2425,] 4.991395e+01 0.00166952 -6.126e-17
     [2426,] 5.005175e+01 0.00166492 -2.565e-17
     [2427,] 5.018993e+01 0.00166034 -6.734e-18
     [2428,] 5.032849e+01 0.00165577 -9.125e-18
     [2429,] 5.046744e+01 0.00165121 -9.465e-17
     [2430,] 5.060677e+01 0.00164666 -2.722e-17
     [2431,] 5.074648e+01 0.00164213 -1.978e-18
     [2432,] 5.088658e+01 0.00163761 -1.419e-16
     [2433,] 5.102707e+01 0.00163310 -1.021e-16
     [2434,] 5.116794e+01 0.00162860 -2.513e-17
     [2435,] 5.130921e+01 0.00162412 -1.15e-16
     [2436,] 5.145086e+01 0.00161965 -2.368e-17
     [2437,] 5.159290e+01 0.00161519 -9.784e-17
     [2438,] 5.173534e+01 0.00161074 -6.706e-17
     [2439,] 5.187817e+01 0.00160631 -4.417e-17
     [2440,] 5.202139e+01 0.00160189 -1.122e-16
     [2441,] 5.216501e+01 0.00159748 3.796e-17
     [2442,] 5.230903e+01 0.00159308 -7.913e-17
     [2443,] 5.245344e+01 0.00158869 -9.077e-18
     [2444,] 5.259825e+01 0.00158432 -7.269e-17
     [2445,] 5.274346e+01 0.00157996 -1.421e-17
     [2446,] 5.288908e+01 0.00157561 -2.367e-17
     [2447,] 5.303509e+01 0.00157127 -1.758e-16
     [2448,] 5.318151e+01 0.00156694 -6.769e-17
     [2449,] 5.332833e+01 0.00156263 -1.722e-16
     [2450,] 5.347556e+01 0.00155833 7.498e-17
     [2451,] 5.362319e+01 0.00155404 -3.945e-17
     [2452,] 5.377123e+01 0.00154976 -9.756e-18
     [2453,] 5.391968e+01 0.00154549 -8.281e-17
     [2454,] 5.406854e+01 0.00154124 -8.597e-17
     [2455,] 5.421781e+01 0.00153699 -1.09e-16
     [2456,] 5.436750e+01 0.00153276 -4.582e-18
     [2457,] 5.451759e+01 0.00152854 -1.021e-16
     [2458,] 5.466810e+01 0.00152433 -7.157e-17
     [2459,] 5.481903e+01 0.00152014 -1.763e-16
     [2460,] 5.497037e+01 0.00151595 -5.541e-17
     [2461,] 5.512213e+01 0.00151178 -6.663e-17
     [2462,] 5.527431e+01 0.00150762 -1.28e-16
     [2463,] 5.542691e+01 0.00150347 -4.432e-17
     [2464,] 5.557993e+01 0.00149933 -8.591e-17
     [2465,] 5.573338e+01 0.00149520 -9.39e-17
     [2466,] 5.588724e+01 0.00149108 6.8e-18
     [2467,] 5.604154e+01 0.00148698 -1.606e-16
     [2468,] 5.619625e+01 0.00148288 -7.411e-17
     [2469,] 5.635140e+01 0.00147880 -1.018e-16
     [2470,] 5.650697e+01 0.00147473 -1.198e-16
     [2471,] 5.666298e+01 0.00147067 -4.874e-17
     [2472,] 5.681941e+01 0.00146662 -4.136e-17
     [2473,] 5.697627e+01 0.00146258 4.423e-17
     [2474,] 5.713357e+01 0.00145856 -1.061e-16
     [2475,] 5.729131e+01 0.00145454 2.551e-17
     [2476,] 5.744947e+01 0.00145054 -2.954e-17
     [2477,] 5.760808e+01 0.00144654 -1.784e-17
     [2478,] 5.776712e+01 0.00144256 -8.087e-18
     [2479,] 5.792660e+01 0.00143859 -5.726e-17
     [2480,] 5.808653e+01 0.00143463 -6.917e-17
     [2481,] 5.824689e+01 0.00143068 -8.043e-17
     [2482,] 5.840770e+01 0.00142674 -7.601e-17
     [2483,] 5.856895e+01 0.00142281 -8.705e-17
     [2484,] 5.873064e+01 0.00141889 -7.624e-17
     [2485,] 5.889278e+01 0.00141499 -8.717e-17
     [2486,] 5.905537e+01 0.00141109 -2.138e-17
     [2487,] 5.921841e+01 0.00140721 -1.161e-16
     [2488,] 5.938190e+01 0.00140333 -5.984e-17
     [2489,] 5.954584e+01 0.00139947 -1.076e-16
     [2490,] 5.971023e+01 0.00139562 1.199e-17
     [2491,] 5.987508e+01 0.00139177 -8.337e-17
     [2492,] 6.004038e+01 0.00138794 -1.215e-16
     [2493,] 6.020614e+01 0.00138412 -1.107e-16
     [2494,] 6.037235e+01 0.00138031 -6.273e-17
     [2495,] 6.053903e+01 0.00137651 -1.025e-16
     [2496,] 6.070616e+01 0.00137272 -8.781e-17
     [2497,] 6.087376e+01 0.00136894 -2.162e-16
     [2498,] 6.104182e+01 0.00136517 -1.937e-16
     [2499,] 6.121034e+01 0.00136141 -1.112e-16
     [2500,] 6.137933e+01 0.00135767 -9.92e-17
     [2501,] 6.154878e+01 0.00135393 -1.248e-16
     [2502,] 6.171870e+01 0.00135020 -1.197e-16
     [2503,] 6.188909e+01 0.00134648 -4.504e-17
     [2504,] 6.205995e+01 0.00134278 -1.574e-16
     [2505,] 6.223129e+01 0.00133908 -6.589e-17
     [2506,] 6.240309e+01 0.00133539 -1.619e-17
     [2507,] 6.257538e+01 0.00133172 -1.851e-16
     [2508,] 6.274813e+01 0.00132805 -6.744e-17
     [2509,] 6.292136e+01 0.00132439 -7.622e-17
     [2510,] 6.309508e+01 0.00132075 -9.096e-17
     [2511,] 6.326927e+01 0.00131711 -6.324e-17
     [2512,] 6.344394e+01 0.00131348 8.711e-18
     [2513,] 6.361909e+01 0.00130987 -7.898e-17
     [2514,] 6.379473e+01 0.00130626 -1.347e-16
     [2515,] 6.397085e+01 0.00130267 -1.48e-16
     [2516,] 6.414746e+01 0.00129908 -9.313e-17
     [2517,] 6.432456e+01 0.00129550 -5.179e-17
     [2518,] 6.450214e+01 0.00129194 1.336e-17
     [2519,] 6.468022e+01 0.00128838 4.968e-17
     [2520,] 6.485879e+01 0.00128483 -1.077e-16
     [2521,] 6.503785e+01 0.00128130 -9.032e-17
     [2522,] 6.521740e+01 0.00127777 -1.58e-16
     [2523,] 6.539745e+01 0.00127425 1.465e-17
     [2524,] 6.557800e+01 0.00127074 -7.414e-17
     [2525,] 6.575905e+01 0.00126724 -3.063e-17
     [2526,] 6.594059e+01 0.00126375 -6.296e-17
     [2527,] 6.612264e+01 0.00126027 -3.085e-17
     [2528,] 6.630519e+01 0.00125681 -8.174e-17
     [2529,] 6.648824e+01 0.00125334 -1.091e-16
     [2530,] 6.667180e+01 0.00124989 -2.357e-19
     [2531,] 6.685587e+01 0.00124645 -1.033e-16
     [2532,] 6.704044e+01 0.00124302 -1.829e-16
     [2533,] 6.722552e+01 0.00123960 4.084e-17
     [2534,] 6.741112e+01 0.00123619 -7.832e-17
     [2535,] 6.759722e+01 0.00123278 -4.176e-17
     [2536,] 6.778384e+01 0.00122939 -1.215e-16
     [2537,] 6.797098e+01 0.00122600 -9.598e-17
     [2538,] 6.815863e+01 0.00122263 1.993e-19
     [2539,] 6.834680e+01 0.00121926 -4.979e-17
     [2540,] 6.853549e+01 0.00121591 -1.711e-16
     [2541,] 6.872470e+01 0.00121256 -1.507e-16
     [2542,] 6.891444e+01 0.00120922 -1.96e-16
     [2543,] 6.910469e+01 0.00120589 -7.351e-17
     [2544,] 6.929548e+01 0.00120257 -1.578e-16
     [2545,] 6.948679e+01 0.00119926 -3.458e-17
     [2546,] 6.967862e+01 0.00119596 -9.993e-17
     [2547,] 6.987099e+01 0.00119267 -3.157e-17
     [2548,] 7.006389e+01 0.00118938 -8.629e-17
     [2549,] 7.025732e+01 0.00118611 -1.489e-16
     [2550,] 7.045128e+01 0.00118284 -1.452e-16
     [2551,] 7.064578e+01 0.00117959 -3.283e-17
     [2552,] 7.084082e+01 0.00117634 -4.514e-18
     [2553,] 7.103639e+01 0.00117310 -3.56e-17
     [2554,] 7.123251e+01 0.00116987 -6.767e-17
     [2555,] 7.142917e+01 0.00116665 -6.424e-17
     [2556,] 7.162637e+01 0.00116344 -1.336e-16
     [2557,] 7.182411e+01 0.00116023 -5.933e-17
     [2558,] 7.202240e+01 0.00115704 -5.118e-17
     [2559,] 7.222124e+01 0.00115385 -4.921e-17
     [2560,] 7.242062e+01 0.00115068 -1.151e-16
     [2561,] 7.262056e+01 0.00114751 -8.463e-17
     [2562,] 7.282105e+01 0.00114435 1.74e-17
     [2563,] 7.302209e+01 0.00114120 -1.083e-16
     [2564,] 7.322369e+01 0.00113806 -1.457e-16
     [2565,] 7.342584e+01 0.00113492 -1.799e-16
     [2566,] 7.362855e+01 0.00113180 -5.769e-17
     [2567,] 7.383183e+01 0.00112868 -2.196e-16
     [2568,] 7.403566e+01 0.00112558 5.906e-17
     [2569,] 7.424005e+01 0.00112248 -9.709e-17
     [2570,] 7.444501e+01 0.00111939 -8.358e-17
     [2571,] 7.465054e+01 0.00111631 -2.377e-17
     [2572,] 7.485663e+01 0.00111323 -3.194e-17
     [2573,] 7.506329e+01 0.00111017 -1.157e-16
     [2574,] 7.527053e+01 0.00110711 -3.932e-17
     [2575,] 7.547833e+01 0.00110406 -5.101e-17
     [2576,] 7.568671e+01 0.00110102 3.854e-17
     [2577,] 7.589566e+01 0.00109799 3.887e-18
     [2578,] 7.610519e+01 0.00109497 -9.477e-17
     [2579,] 7.631530e+01 0.00109195 -1.16e-16
     [2580,] 7.652599e+01 0.00108895 6.889e-17
     [2581,] 7.673726e+01 0.00108595 5.029e-17
     [2582,] 7.694912e+01 0.00108296 -6.646e-17
     [2583,] 7.716156e+01 0.00107998 -3.86e-17
     [2584,] 7.737458e+01 0.00107701 -1.645e-16
     [2585,] 7.758820e+01 0.00107404 -4.76e-17
     [2586,] 7.780240e+01 0.00107108 -1.327e-17
     [2587,] 7.801719e+01 0.00106813 -7.021e-18
     [2588,] 7.823258e+01 0.00106519 -3.111e-17
     [2589,] 7.844856e+01 0.00106226 2.606e-17
     [2590,] 7.866514e+01 0.00105934 -1.428e-16
     [2591,] 7.888232e+01 0.00105642 -1.7e-16
     [2592,] 7.910009e+01 0.00105351 -8.365e-17
     [2593,] 7.931847e+01 0.00105061 -2.792e-17
     [2594,] 7.953745e+01 0.00104772 -3.438e-17
     [2595,] 7.975704e+01 0.00104483 2.246e-17
     [2596,] 7.997723e+01 0.00104196 -4.014e-17
     [2597,] 8.019803e+01 0.00103909 -1.003e-16
     [2598,] 8.041944e+01 0.00103623 -4.984e-17
     [2599,] 8.064145e+01 0.00103338 -8.331e-17
     [2600,] 8.086409e+01 0.00103053 1.194e-16
     [2601,] 8.108733e+01 0.00102769 -3.585e-17
     [2602,] 8.131120e+01 0.00102486 -1.683e-16
     [2603,] 8.153568e+01 0.00102204 -1.14e-16
     [2604,] 8.176078e+01 0.00101923 -6.176e-17
     [2605,] 8.198650e+01 0.00101642 9.247e-18
     [2606,] 8.221285e+01 0.00101362 -2.085e-16
     [2607,] 8.243982e+01 0.00101083 -3.681e-17
     [2608,] 8.266742e+01 0.00100805 5.259e-17
     [2609,] 8.289564e+01 0.00100528 -2.475e-17
     [2610,] 8.312450e+01 0.00100251 -2.181e-16
     [2611,] 8.335399e+01 0.00099975 -1.843e-17
     [2612,] 8.358411e+01 0.00099699 -1.004e-16
     [2613,] 8.381487e+01 0.00099425 -2.083e-16
     [2614,] 8.404626e+01 0.00099151 -9.413e-17
     [2615,] 8.427829e+01 0.00098878 -1.929e-16
     [2616,] 8.451097e+01 0.00098606 -1.303e-16
     [2617,] 8.474428e+01 0.00098335 -1.277e-16
     [2618,] 8.497824e+01 0.00098064 -5.961e-17
     [2619,] 8.521285e+01 0.00097794 1.136e-17
     [2620,] 8.544810e+01 0.00097525 -1.859e-16
     [2621,] 8.568400e+01 0.00097256 -8.983e-17
     [2622,] 8.592056e+01 0.00096988 3.307e-17
     [2623,] 8.615776e+01 0.00096721 -2.056e-17
     [2624,] 8.639562e+01 0.00096455 -1.618e-17
     [2625,] 8.663414e+01 0.00096190 -1.089e-16
     [2626,] 8.687332e+01 0.00095925 -3.315e-17
     [2627,] 8.711316e+01 0.00095661 1.158e-17
     [2628,] 8.735366e+01 0.00095397 -8.414e-17
     [2629,] 8.759482e+01 0.00095135 -1.651e-16
     [2630,] 8.783665e+01 0.00094873 -3.643e-17
     [2631,] 8.807915e+01 0.00094611 -1.336e-16
     [2632,] 8.832231e+01 0.00094351 2.634e-18
     [2633,] 8.856615e+01 0.00094091 3.891e-17
     [2634,] 8.881066e+01 0.00093832 -5.897e-17
     [2635,] 8.905585e+01 0.00093574 -3.207e-17
     [2636,] 8.930171e+01 0.00093316 -2.391e-17
     [2637,] 8.954825e+01 0.00093059 -5.667e-19
     [2638,] 8.979547e+01 0.00092803 -2.629e-17
     [2639,] 9.004338e+01 0.00092548 6.934e-17
     [2640,] 9.029197e+01 0.00092293 -1.506e-16
     [2641,] 9.054124e+01 0.00092039 -7.801e-18
     [2642,] 9.079121e+01 0.00091785 -1.101e-16
     [2643,] 9.104186e+01 0.00091533 -6.669e-17
     [2644,] 9.129321e+01 0.00091281 -1.501e-17
     [2645,] 9.154525e+01 0.00091029 -1.294e-16
     [2646,] 9.179798e+01 0.00090779 -5.816e-17
     [2647,] 9.205142e+01 0.00090529 -5.194e-17
     [2648,] 9.230555e+01 0.00090280 -1.485e-17
     [2649,] 9.256038e+01 0.00090031 -8.174e-17
     [2650,] 9.281592e+01 0.00089783 -9.19e-17
     [2651,] 9.307216e+01 0.00089536 -1.304e-16
     [2652,] 9.332912e+01 0.00089289 -4.645e-17
     [2653,] 9.358678e+01 0.00089044 -1.207e-16
     [2654,] 9.384515e+01 0.00088798 -2.21e-17
     [2655,] 9.410423e+01 0.00088554 7.618e-17
     [2656,] 9.436403e+01 0.00088310 -1.856e-16
     [2657,] 9.462455e+01 0.00088067 -1.01e-16
     [2658,] 9.488579e+01 0.00087825 -1.361e-17
     [2659,] 9.514774e+01 0.00087583 -1.054e-16
     [2660,] 9.541043e+01 0.00087342 -3.148e-17
     [2661,] 9.567383e+01 0.00087101 -1.377e-16
     [2662,] 9.593797e+01 0.00086861 -9.112e-17
     [2663,] 9.620283e+01 0.00086622 -1.463e-16
     [2664,] 9.646842e+01 0.00086384 -3.444e-17
     [2665,] 9.673475e+01 0.00086146 -5.47e-17
     [2666,] 9.700181e+01 0.00085909 -7.313e-17
     [2667,] 9.726961e+01 0.00085672 -1.033e-16
     [2668,] 9.753815e+01 0.00085436 -1.161e-16
     [2669,] 9.780743e+01 0.00085201 4.357e-17
     [2670,] 9.807746e+01 0.00084967 -1.387e-16
     [2671,] 9.834823e+01 0.00084733 -9.871e-17
     [2672,] 9.861974e+01 0.00084499 -5.674e-17
     [2673,] 9.889201e+01 0.00084267 -6.223e-17
     [2674,] 9.916503e+01 0.00084035 -4.337e-17
     [2675,] 9.943880e+01 0.00083803 -4.542e-17
     [2676,] 9.971333e+01 0.00083573 3.655e-17
     [2677,] 9.998861e+01 0.00083343 -4.244e-17
     [2678,] 1.002647e+02 0.00083113 -1.045e-16
     [2679,] 1.005415e+02 0.00082884 -4.965e-17
     [2680,] 1.008190e+02 0.00082656 -4.1e-17
     [2681,] 1.010974e+02 0.00082429 -1.406e-16
     [2682,] 1.013765e+02 0.00082202 -1.046e-16
     [2683,] 1.016564e+02 0.00081975 -4.848e-18
     [2684,] 1.019370e+02 0.00081750 -2.541e-17
     [2685,] 1.022184e+02 0.00081524 -5.97e-17
     [2686,] 1.025006e+02 0.00081300 -1.07e-16
     [2687,] 1.027836e+02 0.00081076 -7.371e-18
     [2688,] 1.030674e+02 0.00080853 4.23e-17
     [2689,] 1.033519e+02 0.00080630 2.649e-17
     [2690,] 1.036373e+02 0.00080408 8.442e-18
     [2691,] 1.039234e+02 0.00080187 3.406e-17
     [2692,] 1.042103e+02 0.00079966 3.193e-18
     [2693,] 1.044980e+02 0.00079746 2.573e-17
     [2694,] 1.047865e+02 0.00079527 2.149e-17
     [2695,] 1.050758e+02 0.00079308 -1.885e-16
     [2696,] 1.053659e+02 0.00079089 -3.229e-17
     [2697,] 1.056568e+02 0.00078872 -1.354e-16
     [2698,] 1.059484e+02 0.00078654 4.75e-17
     [2699,] 1.062409e+02 0.00078438 2.444e-17
     [2700,] 1.065343e+02 0.00078222 -4.53e-17
     [2701,] 1.068284e+02 0.00078007 -8.443e-17
     [2702,] 1.071233e+02 0.00077792 6.564e-17
     [2703,] 1.074190e+02 0.00077578 -6.89e-18
     [2704,] 1.077156e+02 0.00077364 -1.185e-16
     [2705,] 1.080130e+02 0.00077151 -7.593e-17
     [2706,] 1.083112e+02 0.00076939 -1.238e-16
     [2707,] 1.086102e+02 0.00076727 -4.686e-18
     [2708,] 1.089100e+02 0.00076516 -1.525e-16
     [2709,] 1.092107e+02 0.00076305 -7.897e-17
     [2710,] 1.095122e+02 0.00076095 -9.176e-17
     [2711,] 1.098146e+02 0.00075885 3.402e-17
     [2712,] 1.101177e+02 0.00075676 -1.041e-16
     [2713,] 1.104218e+02 0.00075468 3.551e-18
     [2714,] 1.107266e+02 0.00075260 -3.462e-17
     [2715,] 1.110323e+02 0.00075053 -1.103e-16
     [2716,] 1.113388e+02 0.00074846 -1.188e-16
     [2717,] 1.116462e+02 0.00074640 -8.411e-17
     [2718,] 1.119544e+02 0.00074435 -1.47e-16
     [2719,] 1.122635e+02 0.00074230 -5.063e-17
     [2720,] 1.125735e+02 0.00074026 3.939e-17
     [2721,] 1.128842e+02 0.00073822 -9.441e-17
     [2722,] 1.131959e+02 0.00073619 -4.98e-17
     [2723,] 1.135084e+02 0.00073416 -3.472e-17
     [2724,] 1.138218e+02 0.00073214 -3.953e-17
     [2725,] 1.141360e+02 0.00073012 -8.064e-17
     [2726,] 1.144511e+02 0.00072811 -7.469e-17
     [2727,] 1.147671e+02 0.00072611 -3.313e-17
     [2728,] 1.150839e+02 0.00072411 -6.93e-17
     [2729,] 1.154016e+02 0.00072211 5.692e-17
     [2730,] 1.157202e+02 0.00072013 -8.403e-17
     [2731,] 1.160397e+02 0.00071814 2.573e-17
     [2732,] 1.163601e+02 0.00071617 9.644e-18
     [2733,] 1.166813e+02 0.00071419 -1.078e-16
     [2734,] 1.170035e+02 0.00071223 7.319e-17
     [2735,] 1.173265e+02 0.00071027 -3.375e-17
     [2736,] 1.176504e+02 0.00070831 -1.053e-16
     [2737,] 1.179752e+02 0.00070636 1.19e-17
     [2738,] 1.183009e+02 0.00070442 -1.041e-16
     [2739,] 1.186275e+02 0.00070248 3.292e-17
     [2740,] 1.189550e+02 0.00070054 -4.631e-17
     [2741,] 1.192834e+02 0.00069861 -1.676e-17
     [2742,] 1.196127e+02 0.00069669 -8.621e-17
     [2743,] 1.199429e+02 0.00069477 -6.539e-17
     [2744,] 1.202741e+02 0.00069286 6.118e-17
     [2745,] 1.206061e+02 0.00069095 -8.833e-17
     [2746,] 1.209391e+02 0.00068905 -1.095e-16
     [2747,] 1.212730e+02 0.00068715 -1.846e-16
     [2748,] 1.216078e+02 0.00068526 -3.352e-18
     [2749,] 1.219435e+02 0.00068337 -6.395e-17
     [2750,] 1.222802e+02 0.00068149 -1.311e-16
     [2751,] 1.226178e+02 0.00067962 -1.377e-16
     [2752,] 1.229563e+02 0.00067775 -1.367e-16
     [2753,] 1.232957e+02 0.00067588 -3.297e-17
     [2754,] 1.236361e+02 0.00067402 1.641e-17
     [2755,] 1.239775e+02 0.00067216 -7.607e-18
     [2756,] 1.243197e+02 0.00067031 -1.182e-16
     [2757,] 1.246630e+02 0.00066847 -1.174e-16
     [2758,] 1.250071e+02 0.00066663 -6.607e-17
     [2759,] 1.253522e+02 0.00066479 -8.634e-17
     [2760,] 1.256983e+02 0.00066296 -1.242e-16
     [2761,] 1.260453e+02 0.00066114 -1.011e-16
     [2762,] 1.263933e+02 0.00065932 -9.045e-17
     [2763,] 1.267423e+02 0.00065750 -1.407e-17
     [2764,] 1.270922e+02 0.00065569 -3.46e-17
     [2765,] 1.274430e+02 0.00065389 1.371e-17
     [2766,] 1.277949e+02 0.00065209 -8.387e-17
     [2767,] 1.281477e+02 0.00065029 4.678e-17
     [2768,] 1.285015e+02 0.00064850 -3.299e-17
     [2769,] 1.288562e+02 0.00064671 -1.434e-16
     [2770,] 1.292120e+02 0.00064493 2.983e-17
     [2771,] 1.295687e+02 0.00064316 -7.291e-17
     [2772,] 1.299264e+02 0.00064139 -1.079e-16
     [2773,] 1.302851e+02 0.00063962 9.948e-18
     [2774,] 1.306448e+02 0.00063786 -1.11e-16
     [2775,] 1.310055e+02 0.00063610 -3.721e-17
     [2776,] 1.313672e+02 0.00063435 -6.525e-17
     [2777,] 1.317298e+02 0.00063261 -1.661e-16
     [2778,] 1.320935e+02 0.00063087 -3.28e-17
     [2779,] 1.324582e+02 0.00062913 -5.241e-17
     [2780,] 1.328239e+02 0.00062740 -4.136e-17
     [2781,] 1.331906e+02 0.00062567 -6.411e-17
     [2782,] 1.335583e+02 0.00062395 1.868e-17
     [2783,] 1.339270e+02 0.00062223 -5.414e-17
     [2784,] 1.342967e+02 0.00062052 -8.82e-17
     [2785,] 1.346675e+02 0.00061881 -6.704e-17
     [2786,] 1.350393e+02 0.00061710 -1.256e-16
     [2787,] 1.354121e+02 0.00061540 -3.502e-17
     [2788,] 1.357859e+02 0.00061371 -2.002e-16
     [2789,] 1.361608e+02 0.00061202 -4.294e-17
     [2790,] 1.365367e+02 0.00061034 -6.517e-17
     [2791,] 1.369137e+02 0.00060865 -2.187e-16
     [2792,] 1.372917e+02 0.00060698 -1.586e-16
     [2793,] 1.376707e+02 0.00060531 -1.188e-16
     [2794,] 1.380508e+02 0.00060364 -1.832e-16
     [2795,] 1.384319e+02 0.00060198 -1.065e-16
     [2796,] 1.388141e+02 0.00060032 -2.072e-17
     [2797,] 1.391973e+02 0.00059867 -2.211e-16
     [2798,] 1.395816e+02 0.00059702 -9.254e-17
     [2799,] 1.399670e+02 0.00059538 -6.101e-17
     [2800,] 1.403534e+02 0.00059374 1.43e-17
     [2801,] 1.407409e+02 0.00059210 -3.765e-17
     [2802,] 1.411294e+02 0.00059047 -1.019e-17
     [2803,] 1.415190e+02 0.00058885 -9.172e-17
     [2804,] 1.419097e+02 0.00058723 -1.863e-16
     [2805,] 1.423015e+02 0.00058561 4.084e-17
     [2806,] 1.426944e+02 0.00058400 -3.793e-17
     [2807,] 1.430883e+02 0.00058239 -2.75e-17
     [2808,] 1.434834e+02 0.00058079 5.319e-17
     [2809,] 1.438795e+02 0.00057919 -1.466e-16
     [2810,] 1.442767e+02 0.00057759 -1.249e-16
     [2811,] 1.446750e+02 0.00057600 -1.498e-16
     [2812,] 1.450744e+02 0.00057442 -1.303e-16
     [2813,] 1.454749e+02 0.00057284 8.839e-17
     [2814,] 1.458766e+02 0.00057126 9.279e-17
     [2815,] 1.462793e+02 0.00056969 -8.465e-17
     [2816,] 1.466831e+02 0.00056812 -2.124e-17
     [2817,] 1.470881e+02 0.00056655 -3.57e-17
     [2818,] 1.474942e+02 0.00056499 6.836e-17
     [2819,] 1.479014e+02 0.00056344 -1.507e-16
     [2820,] 1.483097e+02 0.00056189 3.735e-17
     [2821,] 1.487192e+02 0.00056034 8.535e-18
     [2822,] 1.491297e+02 0.00055880 -4.513e-17
     [2823,] 1.495414e+02 0.00055726 -1.248e-16
     [2824,] 1.499543e+02 0.00055572 -7.855e-18
     [2825,] 1.503683e+02 0.00055419 -4.281e-17
     [2826,] 1.507834e+02 0.00055267 -3.345e-17
     [2827,] 1.511997e+02 0.00055115 6.905e-17
     [2828,] 1.516171e+02 0.00054963 7.744e-17
     [2829,] 1.520357e+02 0.00054812 -1.113e-16
     [2830,] 1.524554e+02 0.00054661 -1.255e-16
     [2831,] 1.528763e+02 0.00054510 -1.056e-16
     [2832,] 1.532984e+02 0.00054360 2.421e-17
     [2833,] 1.537216e+02 0.00054210 -3.462e-17
     [2834,] 1.541460e+02 0.00054061 -2.296e-16
     [2835,] 1.545716e+02 0.00053912 3.034e-17
     [2836,] 1.549983e+02 0.00053764 -8.199e-17
     [2837,] 1.554262e+02 0.00053616 -6.351e-17
     [2838,] 1.558553e+02 0.00053468 -1.648e-16
     [2839,] 1.562856e+02 0.00053321 -1.009e-16
     [2840,] 1.567171e+02 0.00053174 -6.517e-17
     [2841,] 1.571497e+02 0.00053028 -7.72e-18
     [2842,] 1.575836e+02 0.00052882 4.329e-17
     [2843,] 1.580186e+02 0.00052736 -9.338e-17
     [2844,] 1.584549e+02 0.00052591 -8.814e-17
     [2845,] 1.588923e+02 0.00052446 -9.514e-17
     [2846,] 1.593310e+02 0.00052302 -3.71e-17
     [2847,] 1.597709e+02 0.00052158 -8.918e-17
     [2848,] 1.602120e+02 0.00052014 4.307e-17
     [2849,] 1.606543e+02 0.00051871 3.558e-17
     [2850,] 1.610978e+02 0.00051728 -1.565e-16
     [2851,] 1.615426e+02 0.00051586 -8.565e-17
     [2852,] 1.619885e+02 0.00051444 -6.282e-17
     [2853,] 1.624358e+02 0.00051302 -8.122e-17
     [2854,] 1.628842e+02 0.00051161 -4.143e-17
     [2855,] 1.633339e+02 0.00051020 6.654e-17
     [2856,] 1.637848e+02 0.00050880 -7.254e-17
     [2857,] 1.642370e+02 0.00050740 -8.123e-17
     [2858,] 1.646904e+02 0.00050600 -3.608e-17
     [2859,] 1.651451e+02 0.00050461 -6.361e-17
     [2860,] 1.656010e+02 0.00050322 -1.22e-16
     [2861,] 1.660582e+02 0.00050183 -5.553e-17
     [2862,] 1.665166e+02 0.00050045 -5.51e-17
     [2863,] 1.669764e+02 0.00049907 6.464e-17
     [2864,] 1.674373e+02 0.00049770 2.795e-17
     [2865,] 1.678996e+02 0.00049633 -1.351e-16
     [2866,] 1.683631e+02 0.00049496 3.86e-17
     [2867,] 1.688279e+02 0.00049360 -3.305e-17
     [2868,] 1.692940e+02 0.00049224 -1.124e-16
     [2869,] 1.697614e+02 0.00049088 -1.161e-16
     [2870,] 1.702301e+02 0.00048953 -2.685e-17
     [2871,] 1.707001e+02 0.00048819 1.435e-17
     [2872,] 1.711713e+02 0.00048684 -1.619e-17
     [2873,] 1.716439e+02 0.00048550 -8.423e-17
     [2874,] 1.721178e+02 0.00048416 -8.609e-17
     [2875,] 1.725929e+02 0.00048283 -5.218e-17
     [2876,] 1.730694e+02 0.00048150 -1.197e-16
     [2877,] 1.735472e+02 0.00048018 -4.316e-17
     [2878,] 1.740264e+02 0.00047885 -1.416e-16
     [2879,] 1.745068e+02 0.00047754 -1.343e-16
     [2880,] 1.749886e+02 0.00047622 -1.457e-17
     [2881,] 1.754717e+02 0.00047491 5.566e-17
     [2882,] 1.759561e+02 0.00047360 -5.605e-17
     [2883,] 1.764419e+02 0.00047230 -5.027e-17
     [2884,] 1.769290e+02 0.00047100 2.541e-17
     [2885,] 1.774175e+02 0.00046970 -8.852e-17
     [2886,] 1.779073e+02 0.00046841 -1.033e-16
     [2887,] 1.783984e+02 0.00046712 2.618e-17
     [2888,] 1.788910e+02 0.00046583 -1.218e-17
     [2889,] 1.793848e+02 0.00046455 2.57e-17
     [2890,] 1.798801e+02 0.00046327 -1.319e-16
     [2891,] 1.803767e+02 0.00046200 -1.067e-16
     [2892,] 1.808747e+02 0.00046072 2.011e-17
     [2893,] 1.813740e+02 0.00045946 -1.43e-16
     [2894,] 1.818747e+02 0.00045819 -1.412e-17
     [2895,] 1.823769e+02 0.00045693 -2.717e-17
     [2896,] 1.828804e+02 0.00045567 -6.13e-17
     [2897,] 1.833853e+02 0.00045442 -1.365e-16
     [2898,] 1.838915e+02 0.00045317 -3.183e-17
     [2899,] 1.843992e+02 0.00045192 -2.32e-17
     [2900,] 1.849083e+02 0.00045067 -1.09e-16
     [2901,] 1.854188e+02 0.00044943 2.536e-17
     [2902,] 1.859307e+02 0.00044820 -1.509e-16
     [2903,] 1.864440e+02 0.00044696 -6.699e-17
     [2904,] 1.869587e+02 0.00044573 7.479e-18
     [2905,] 1.874749e+02 0.00044450 2.236e-18
     [2906,] 1.879925e+02 0.00044328 -9.405e-17
     [2907,] 1.885115e+02 0.00044206 -4.67e-17
     [2908,] 1.890319e+02 0.00044084 -1.01e-16
     [2909,] 1.895538e+02 0.00043963 -1.635e-16
     [2910,] 1.900771e+02 0.00043842 9.679e-18
     [2911,] 1.906019e+02 0.00043721 -2.463e-17
     [2912,] 1.911281e+02 0.00043601 -7.803e-17
     [2913,] 1.916557e+02 0.00043481 5.486e-18
     [2914,] 1.921848e+02 0.00043361 -2.5e-17
     [2915,] 1.927154e+02 0.00043242 2.865e-17
     [2916,] 1.932475e+02 0.00043123 -8.852e-17
     [2917,] 1.937810e+02 0.00043004 -8.15e-17
     [2918,] 1.943160e+02 0.00042885 1.265e-17
     [2919,] 1.948524e+02 0.00042767 -8.503e-17
     [2920,] 1.953904e+02 0.00042650 -8.493e-17
     [2921,] 1.959298e+02 0.00042532 -1.545e-17
     [2922,] 1.964707e+02 0.00042415 -1.534e-17
     [2923,] 1.970131e+02 0.00042298 -4.529e-17
     [2924,] 1.975570e+02 0.00042182 1.692e-17
     [2925,] 1.981024e+02 0.00042066 -1.702e-16
     [2926,] 1.986494e+02 0.00041950 6.451e-17
     [2927,] 1.991978e+02 0.00041834 -4.227e-17
     [2928,] 1.997477e+02 0.00041719 -8.335e-17
     [2929,] 2.002992e+02 0.00041604 1.144e-16
     [2930,] 2.008522e+02 0.00041490 5.557e-17
     [2931,] 2.014067e+02 0.00041376 -6.812e-18
     [2932,] 2.019627e+02 0.00041262 8.328e-17
     [2933,] 2.025203e+02 0.00041148 7.49e-17
     [2934,] 2.030794e+02 0.00041035 -4.426e-17
     [2935,] 2.036400e+02 0.00040922 3.744e-17
     [2936,] 2.042022e+02 0.00040809 1.562e-16
     [2937,] 2.047660e+02 0.00040697 -6.232e-17
     [2938,] 2.053313e+02 0.00040585 5.735e-17
     [2939,] 2.058982e+02 0.00040473 1.773e-16
     [2940,] 2.064666e+02 0.00040362 8.703e-17
     [2941,] 2.070366e+02 0.00040250 1.474e-16
     [2942,] 2.076082e+02 0.00040140 7.559e-17
     [2943,] 2.081814e+02 0.00040029 5.5e-17
     [2944,] 2.087561e+02 0.00039919 5.961e-17
     [2945,] 2.093324e+02 0.00039809 -8.477e-17
     [2946,] 2.099104e+02 0.00039699 -2.378e-17
     [2947,] 2.104899e+02 0.00039590 1.137e-16
     [2948,] 2.110710e+02 0.00039481 2.425e-18
     [2949,] 2.116537e+02 0.00039372 1.648e-17
     [2950,] 2.122380e+02 0.00039264 -9.598e-17
     [2951,] 2.128240e+02 0.00039156 1.043e-16
     [2952,] 2.134115e+02 0.00039048 -6.339e-18
     [2953,] 2.140007e+02 0.00038941 7.703e-17
     [2954,] 2.145915e+02 0.00038833 1.032e-16
     [2955,] 2.151840e+02 0.00038727 1.364e-16
     [2956,] 2.157780e+02 0.00038620 -6.379e-17
     [2957,] 2.163737e+02 0.00038514 7.119e-17
     [2958,] 2.169711e+02 0.00038408 2.173e-17
     [2959,] 2.175701e+02 0.00038302 9.425e-18
     [2960,] 2.181708e+02 0.00038196 -2.002e-17
     [2961,] 2.187731e+02 0.00038091 1.261e-16
     [2962,] 2.193771e+02 0.00037986 7.865e-17
     [2963,] 2.199827e+02 0.00037882 -3.272e-17
     [2964,] 2.205900e+02 0.00037777 5.71e-17
     [2965,] 2.211990e+02 0.00037673 -2.395e-17
     [2966,] 2.218097e+02 0.00037570 8.566e-17
     [2967,] 2.224221e+02 0.00037466 9.883e-17
     [2968,] 2.230361e+02 0.00037363 5.203e-17
     [2969,] 2.236519e+02 0.00037260 1.101e-17
     [2970,] 2.242694e+02 0.00037158 -8.405e-17
     [2971,] 2.248885e+02 0.00037055 -1.012e-17
     [2972,] 2.255094e+02 0.00036953 5.965e-17
     [2973,] 2.261320e+02 0.00036852 -1.362e-17
     [2974,] 2.267563e+02 0.00036750 -7.84e-18
     [2975,] 2.273823e+02 0.00036649 8.281e-17
     [2976,] 2.280100e+02 0.00036548 -2.544e-17
     [2977,] 2.286395e+02 0.00036447 -8.031e-18
     [2978,] 2.292707e+02 0.00036347 -1.281e-16
     [2979,] 2.299037e+02 0.00036247 6.645e-17
     [2980,] 2.305384e+02 0.00036147 -7.303e-17
     [2981,] 2.311749e+02 0.00036048 -1.339e-17
     [2982,] 2.318131e+02 0.00035948 -4.778e-17
     [2983,] 2.324531e+02 0.00035850 -8.137e-17
     [2984,] 2.330948e+02 0.00035751 -1.089e-16
     [2985,] 2.337383e+02 0.00035652 -1.408e-17
     [2986,] 2.343836e+02 0.00035554 2.106e-17
     [2987,] 2.350307e+02 0.00035456 -3.665e-17
     [2988,] 2.356796e+02 0.00035359 -7.411e-17
     [2989,] 2.363302e+02 0.00035261 -8.284e-17
     [2990,] 2.369827e+02 0.00035164 -8.285e-17
     [2991,] 2.376370e+02 0.00035067 -1.029e-16
     [2992,] 2.382930e+02 0.00034971 2.841e-17
     [2993,] 2.389509e+02 0.00034875 -5.204e-17
     [2994,] 2.396106e+02 0.00034779 -1.076e-16
     [2995,] 2.402721e+02 0.00034683 -3.36e-17
     [2996,] 2.409354e+02 0.00034587 -3.663e-17
     [2997,] 2.416006e+02 0.00034492 3.698e-18
     [2998,] 2.422676e+02 0.00034397 -1.854e-17
     [2999,] 2.429364e+02 0.00034303 -6.268e-17
     [3000,] 2.436071e+02 0.00034208 -5.22e-17
     [3001,] 2.442797e+02 0.00034114 3.741e-17
     [3002,] 2.449541e+02 0.00034020 -9.428e-17
     [3003,] 2.456303e+02 0.00033926 -1.251e-17
     [3004,] 2.463085e+02 0.00033833 -3.348e-17
     [3005,] 2.469885e+02 0.00033740 2.887e-17
     [3006,] 2.476703e+02 0.00033647 -5.896e-17
     [3007,] 2.483541e+02 0.00033554 -6.896e-17
     [3008,] 2.490398e+02 0.00033462 -3.259e-17
     [3009,] 2.497273e+02 0.00033370 9.402e-17
     [3010,] 2.504167e+02 0.00033278 2.598e-17
     [3011,] 2.511081e+02 0.00033186 -9.439e-17
     [3012,] 2.518013e+02 0.00033095 -3.64e-17
     [3013,] 2.524965e+02 0.00033004 -7.669e-17
     [3014,] 2.531936e+02 0.00032913 1.122e-16
     [3015,] 2.538926e+02 0.00032822 -8.772e-17
     [3016,] 2.545935e+02 0.00032732 -1.098e-16
     [3017,] 2.552964e+02 0.00032642 3.69e-17
     [3018,] 2.560012e+02 0.00032552 -6.246e-17
     [3019,] 2.567080e+02 0.00032462 -4.632e-17
     [3020,] 2.574167e+02 0.00032373 3.849e-17
     [3021,] 2.581274e+02 0.00032284 9.765e-17
     [3022,] 2.588400e+02 0.00032195 -6.194e-17
     [3023,] 2.595546e+02 0.00032106 5.816e-17
     [3024,] 2.602712e+02 0.00032018 7.125e-17
     [3025,] 2.609897e+02 0.00031930 3.951e-17
     [3026,] 2.617102e+02 0.00031842 -9.708e-17
     [3027,] 2.624328e+02 0.00031754 -1.197e-16
     [3028,] 2.631573e+02 0.00031667 3.842e-17
     [3029,] 2.638838e+02 0.00031580 -1.073e-17
     [3030,] 2.646123e+02 0.00031493 -1.307e-16
     [3031,] 2.653429e+02 0.00031406 -4.761e-17
     [3032,] 2.660754e+02 0.00031319 -1.81e-16
     [3033,] 2.668100e+02 0.00031233 -3.332e-17
     [3034,] 2.675466e+02 0.00031147 -5.84e-17
     [3035,] 2.682852e+02 0.00031061 -2.396e-17
     [3036,] 2.690259e+02 0.00030976 -7.558e-17
     [3037,] 2.697686e+02 0.00030891 3.772e-17
     [3038,] 2.705134e+02 0.00030806 1.146e-16
     [3039,] 2.712602e+02 0.00030721 -5.47e-17
     [3040,] 2.720091e+02 0.00030636 5.547e-18
     [3041,] 2.727601e+02 0.00030552 1.835e-18
     [3042,] 2.735131e+02 0.00030468 -4.651e-17
     [3043,] 2.742682e+02 0.00030384 -2.431e-17
     [3044,] 2.750254e+02 0.00030300 -1.28e-16
     [3045,] 2.757847e+02 0.00030217 6.474e-18
     [3046,] 2.765460e+02 0.00030134 -8.83e-18
     [3047,] 2.773095e+02 0.00030051 -3.663e-17
     [3048,] 2.780751e+02 0.00029968 -1.382e-16
     [3049,] 2.788428e+02 0.00029885 2.125e-17
     [3050,] 2.796126e+02 0.00029803 -3.38e-17
     [3051,] 2.803846e+02 0.00029721 -1.678e-16
     [3052,] 2.811587e+02 0.00029639 -1.773e-17
     [3053,] 2.819349e+02 0.00029558 -5.007e-17
     [3054,] 2.827132e+02 0.00029476 -5.878e-17
     [3055,] 2.834937e+02 0.00029395 6.112e-18
     [3056,] 2.842764e+02 0.00029314 7.043e-17
     [3057,] 2.850612e+02 0.00029233 -1.603e-16
     [3058,] 2.858482e+02 0.00029153 -7.767e-17
     [3059,] 2.866374e+02 0.00029073 -1.666e-16
     [3060,] 2.874287e+02 0.00028993 -1.831e-17
     [3061,] 2.882222e+02 0.00028913 -6.988e-17
     [3062,] 2.890179e+02 0.00028833 -1.013e-16
     [3063,] 2.898159e+02 0.00028754 -3.311e-17
     [3064,] 2.906160e+02 0.00028675 -1.263e-16
     [3065,] 2.914183e+02 0.00028596 -1.438e-16
     [3066,] 2.922228e+02 0.00028517 9.157e-17
     [3067,] 2.930296e+02 0.00028439 -5.526e-17
     [3068,] 2.938386e+02 0.00028360 8.919e-17
     [3069,] 2.946498e+02 0.00028282 -2.728e-17
     [3070,] 2.954633e+02 0.00028204 -4.895e-17
     [3071,] 2.962790e+02 0.00028127 -1.449e-16
     [3072,] 2.970969e+02 0.00028049 -4.763e-17
     [3073,] 2.979172e+02 0.00027972 6.71e-17
     [3074,] 2.987396e+02 0.00027895 -6.536e-17
     [3075,] 2.995644e+02 0.00027818 3.488e-17
     [3076,] 3.003914e+02 0.00027742 -1.053e-17
     [3077,] 3.012207e+02 0.00027665 -5.712e-17
     [3078,] 3.020523e+02 0.00027589 -7.668e-17
     [3079,] 3.028862e+02 0.00027513 1.665e-17
     [3080,] 3.037224e+02 0.00027437 5.536e-17
     [3081,] 3.045609e+02 0.00027362 -1.532e-16
     [3082,] 3.054018e+02 0.00027286 -4.959e-17
     [3083,] 3.062449e+02 0.00027211 -7.754e-17
     [3084,] 3.070904e+02 0.00027136 -1.113e-16
     [3085,] 3.079382e+02 0.00027062 -1.182e-16
     [3086,] 3.087883e+02 0.00026987 -1.472e-16
     [3087,] 3.096408e+02 0.00026913 -3.797e-18
     [3088,] 3.104957e+02 0.00026839 -1.209e-16
     [3089,] 3.113529e+02 0.00026765 -6.033e-17
     [3090,] 3.122125e+02 0.00026691 2.64e-17
     [3091,] 3.130744e+02 0.00026618 4.426e-17
     [3092,] 3.139387e+02 0.00026544 9.726e-17
     [3093,] 3.148054e+02 0.00026471 4.725e-17
     [3094,] 3.156745e+02 0.00026398 4.91e-17
     [3095,] 3.165460e+02 0.00026326 -8.602e-17
     [3096,] 3.174200e+02 0.00026253 6.398e-18
     [3097,] 3.182963e+02 0.00026181 -7.652e-17
     [3098,] 3.191750e+02 0.00026109 -5.484e-17
     [3099,] 3.200562e+02 0.00026037 -1.258e-16
     [3100,] 3.209398e+02 0.00025965 2.295e-17
     [3101,] 3.218258e+02 0.00025894 1.024e-16
     [3102,] 3.227143e+02 0.00025823 4.926e-17
     [3103,] 3.236053e+02 0.00025752 -4.786e-17
     [3104,] 3.244987e+02 0.00025681 -4.623e-17
     [3105,] 3.253945e+02 0.00025610 1.138e-16
     [3106,] 3.262929e+02 0.00025539 -1.53e-16
     [3107,] 3.271937e+02 0.00025469 -3.162e-17
     [3108,] 3.280970e+02 0.00025399 -8.803e-17
     [3109,] 3.290028e+02 0.00025329 -4.047e-17
     [3110,] 3.299111e+02 0.00025259 -3.968e-17
     [3111,] 3.308219e+02 0.00025190 -9.965e-17
     [3112,] 3.317352e+02 0.00025120 -9.531e-17
     [3113,] 3.326511e+02 0.00025051 -3.367e-17
     [3114,] 3.335695e+02 0.00024982 -5.184e-17
     [3115,] 3.344904e+02 0.00024914 -3.57e-17
     [3116,] 3.354138e+02 0.00024845 9.073e-19
     [3117,] 3.363398e+02 0.00024777 1.056e-16
     [3118,] 3.372684e+02 0.00024708 -1.103e-16
     [3119,] 3.381995e+02 0.00024640 -7.439e-17
     [3120,] 3.391332e+02 0.00024572 -1.251e-16
     [3121,] 3.400695e+02 0.00024505 -1.61e-16
     [3122,] 3.410083e+02 0.00024437 -4.495e-17
     [3123,] 3.419498e+02 0.00024370 -9.272e-17
     [3124,] 3.428938e+02 0.00024303 -1.393e-17
     [3125,] 3.438405e+02 0.00024236 -3.886e-18
     [3126,] 3.447897e+02 0.00024169 6.661e-17
     [3127,] 3.457416e+02 0.00024103 -8.998e-17
     [3128,] 3.466961e+02 0.00024036 -6.72e-17
     [3129,] 3.476533e+02 0.00023970 2.197e-17
     [3130,] 3.486131e+02 0.00023904 -2.422e-17
     [3131,] 3.495755e+02 0.00023838 -4.427e-17
     [3132,] 3.505406e+02 0.00023773 -5.503e-17
     [3133,] 3.515084e+02 0.00023707 -4.625e-17
     [3134,] 3.524788e+02 0.00023642 -3.431e-17
     [3135,] 3.534519e+02 0.00023577 2.116e-17
     [3136,] 3.544277e+02 0.00023512 -9.155e-17
     [3137,] 3.554062e+02 0.00023447 -7.349e-17
     [3138,] 3.563874e+02 0.00023383 -7.913e-17
     [3139,] 3.573713e+02 0.00023318 1.346e-17
     [3140,] 3.583579e+02 0.00023254 -7.706e-17
     [3141,] 3.593473e+02 0.00023190 2.197e-17
     [3142,] 3.603393e+02 0.00023126 -1.027e-16
     [3143,] 3.613342e+02 0.00023063 4.423e-17
     [3144,] 3.623317e+02 0.00022999 -8.581e-17
     [3145,] 3.633320e+02 0.00022936 2.299e-17
     [3146,] 3.643351e+02 0.00022873 -3.696e-17
     [3147,] 3.653410e+02 0.00022810 -2.913e-17
     [3148,] 3.663496e+02 0.00022747 -2.14e-17
     [3149,] 3.673610e+02 0.00022684 4.508e-17
     [3150,] 3.683752e+02 0.00022622 3.907e-17
     [3151,] 3.693922e+02 0.00022560 6.563e-17
     [3152,] 3.704120e+02 0.00022497 -1.702e-17
     [3153,] 3.714346e+02 0.00022436 -1.014e-16
     [3154,] 3.724601e+02 0.00022374 -6.374e-17
     [3155,] 3.734883e+02 0.00022312 -6.3e-17
     [3156,] 3.745195e+02 0.00022251 -1.232e-16
     [3157,] 3.755534e+02 0.00022189 -1.312e-16
     [3158,] 3.765902e+02 0.00022128 -1.686e-17
     [3159,] 3.776299e+02 0.00022067 7.184e-17
     [3160,] 3.786725e+02 0.00022007 -7.672e-18
     [3161,] 3.797179e+02 0.00021946 -4.089e-17
     [3162,] 3.807662e+02 0.00021886 -7.667e-17
     [3163,] 3.818174e+02 0.00021825 -6.623e-17
     [3164,] 3.828715e+02 0.00021765 1.601e-17
     [3165,] 3.839285e+02 0.00021705 -1.342e-16
     [3166,] 3.849885e+02 0.00021646 -9.454e-17
     [3167,] 3.860513e+02 0.00021586 -6.855e-17
     [3168,] 3.871171e+02 0.00021527 -1.51e-16
     [3169,] 3.881859e+02 0.00021467 -2.663e-17
     [3170,] 3.892576e+02 0.00021408 2.853e-17
     [3171,] 3.903322e+02 0.00021349 6.447e-17
     [3172,] 3.914099e+02 0.00021291 -1.663e-16
     [3173,] 3.924904e+02 0.00021232 1.011e-18
     [3174,] 3.935740e+02 0.00021173 -2.993e-17
     [3175,] 3.946606e+02 0.00021115 2.985e-17
     [3176,] 3.957502e+02 0.00021057 6.267e-18
     [3177,] 3.968427e+02 0.00020999 -4.186e-17
     [3178,] 3.979383e+02 0.00020941 -1.624e-16
     [3179,] 3.990369e+02 0.00020884 -7.564e-17
     [3180,] 4.001386e+02 0.00020826 -1.039e-16
     [3181,] 4.012433e+02 0.00020769 -5.516e-17
     [3182,] 4.023510e+02 0.00020712 -4.639e-17
     [3183,] 4.034618e+02 0.00020655 -3.623e-17
     [3184,] 4.045757e+02 0.00020598 -1.891e-16
     [3185,] 4.056926e+02 0.00020541 -4.818e-17
     [3186,] 4.068127e+02 0.00020484 5.664e-18
     [3187,] 4.079358e+02 0.00020428 -1.371e-16
     [3188,] 4.090620e+02 0.00020372 -1.856e-16
     [3189,] 4.101913e+02 0.00020316 -1.023e-17
     [3190,] 4.113238e+02 0.00020260 -6.758e-17
     [3191,] 4.124593e+02 0.00020204 2.558e-17
     [3192,] 4.135980e+02 0.00020148 -8.471e-17
     [3193,] 4.147399e+02 0.00020093 -5.963e-17
     [3194,] 4.158849e+02 0.00020038 -4.848e-17
     [3195,] 4.170330e+02 0.00019982 -3.666e-17
     [3196,] 4.181844e+02 0.00019927 -8.505e-17
     [3197,] 4.193389e+02 0.00019873 -6.804e-17
     [3198,] 4.204966e+02 0.00019818 -3.212e-17
     [3199,] 4.216575e+02 0.00019763 -1.981e-16
     [3200,] 4.228216e+02 0.00019709 -8.592e-17
     [3201,] 4.239889e+02 0.00019655 -1.278e-18
     [3202,] 4.251594e+02 0.00019600 -1.548e-16
     [3203,] 4.263332e+02 0.00019547 -7.169e-17
     [3204,] 4.275102e+02 0.00019493 -5.047e-17
     [3205,] 4.286905e+02 0.00019439 3.067e-18
     [3206,] 4.298740e+02 0.00019386 -4.713e-17
     [3207,] 4.310608e+02 0.00019332 -9.108e-17
     [3208,] 4.322508e+02 0.00019279 -8.318e-17
     [3209,] 4.334442e+02 0.00019226 -1.158e-17
     [3210,] 4.346408e+02 0.00019173 -2.501e-17
     [3211,] 4.358408e+02 0.00019120 2.143e-17
     [3212,] 4.370440e+02 0.00019067 -9.98e-17
     [3213,] 4.382506e+02 0.00019015 -1.008e-17
     [3214,] 4.394605e+02 0.00018963 -4.925e-17
     [3215,] 4.406738e+02 0.00018910 -1.123e-16
     [3216,] 4.418904e+02 0.00018858 -5.392e-17
     [3217,] 4.431103e+02 0.00018806 -1.288e-17
     [3218,] 4.443336e+02 0.00018755 -7.625e-17
     [3219,] 4.455603e+02 0.00018703 1.435e-17
     [3220,] 4.467904e+02 0.00018652 -1.251e-16
     [3221,] 4.480239e+02 0.00018600 -1.209e-16
     [3222,] 4.492608e+02 0.00018549 -6.749e-17
     [3223,] 4.505011e+02 0.00018498 -1.468e-16
     [3224,] 4.517449e+02 0.00018447 -1.7e-16
     [3225,] 4.529920e+02 0.00018396 -8.036e-17
     [3226,] 4.542426e+02 0.00018346 -6.679e-17
     [3227,] 4.554967e+02 0.00018295 -1.824e-16
     [3228,] 4.567542e+02 0.00018245 -1.614e-16
     [3229,] 4.580152e+02 0.00018194 3.054e-17
     [3230,] 4.592797e+02 0.00018144 -2.468e-17
     [3231,] 4.605476e+02 0.00018094 2.835e-17
     [3232,] 4.618191e+02 0.00018045 -4.072e-17
     [3233,] 4.630941e+02 0.00017995 -1.136e-16
     [3234,] 4.643726e+02 0.00017945 -1.015e-16
     [3235,] 4.656546e+02 0.00017896 -5.394e-17
     [3236,] 4.669402e+02 0.00017847 -7.107e-17
     [3237,] 4.682293e+02 0.00017798 -1.178e-16
     [3238,] 4.695220e+02 0.00017749 2.291e-17
     [3239,] 4.708182e+02 0.00017700 -1.252e-16
     [3240,] 4.721180e+02 0.00017651 -3.294e-17
     [3241,] 4.734214e+02 0.00017602 -7.005e-17
     [3242,] 4.747284e+02 0.00017554 -4.084e-17
     [3243,] 4.760391e+02 0.00017506 1.074e-17
     [3244,] 4.773533e+02 0.00017457 -7.374e-17
     [3245,] 4.786712e+02 0.00017409 -9.595e-17
     [3246,] 4.799927e+02 0.00017361 -5.068e-17
     [3247,] 4.813178e+02 0.00017314 -3.426e-17
     [3248,] 4.826466e+02 0.00017266 -5.479e-17
     [3249,] 4.839791e+02 0.00017218 -8.043e-17
     [3250,] 4.853153e+02 0.00017171 -2.932e-17
     [3251,] 4.866551e+02 0.00017124 2.377e-17
     [3252,] 4.879986e+02 0.00017077 -4.807e-17
     [3253,] 4.893459e+02 0.00017030 -2.771e-17
     [3254,] 4.906969e+02 0.00016983 -3.767e-17
     [3255,] 4.920516e+02 0.00016936 -4.442e-19
     [3256,] 4.934100e+02 0.00016889 6.933e-17
     [3257,] 4.947722e+02 0.00016843 2.431e-17
     [3258,] 4.961382e+02 0.00016796 -5.991e-17
     [3259,] 4.975079e+02 0.00016750 -1.574e-16
     [3260,] 4.988814e+02 0.00016704 -3.947e-17
     [3261,] 5.002587e+02 0.00016658 9.75e-17
     [3262,] 5.016398e+02 0.00016612 -9.109e-17
     [3263,] 5.030247e+02 0.00016566 1.603e-17
     [3264,] 5.044134e+02 0.00016521 -4.013e-17
     [3265,] 5.058060e+02 0.00016475 -1.915e-16
     [3266,] 5.072024e+02 0.00016430 -5.446e-19
     [3267,] 5.086027e+02 0.00016385 2.557e-17
     [3268,] 5.100068e+02 0.00016340 -1.063e-16
     [3269,] 5.114148e+02 0.00016295 -2.758e-17
     [3270,] 5.128267e+02 0.00016250 -5.037e-17
     [3271,] 5.142425e+02 0.00016205 -1.513e-16
     [3272,] 5.156622e+02 0.00016160 -4.719e-17
     [3273,] 5.170859e+02 0.00016116 8.855e-18
     [3274,] 5.185134e+02 0.00016072 -4.955e-17
     [3275,] 5.199449e+02 0.00016027 -4.256e-17
     [3276,] 5.213804e+02 0.00015983 -3.416e-17
     [3277,] 5.228198e+02 0.00015939 -2.026e-16
     [3278,] 5.242632e+02 0.00015895 -1.951e-16
     [3279,] 5.257105e+02 0.00015852 -1.328e-16
     [3280,] 5.271619e+02 0.00015808 1.086e-17
     [3281,] 5.286173e+02 0.00015764 -9.113e-18
     [3282,] 5.300767e+02 0.00015721 3.598e-18
     [3283,] 5.315401e+02 0.00015678 -1.887e-16
     [3284,] 5.330075e+02 0.00015635 -4.699e-17
     [3285,] 5.344791e+02 0.00015592 -3.61e-17
     [3286,] 5.359546e+02 0.00015549 -1.428e-16
     [3287,] 5.374343e+02 0.00015506 -2.021e-17
     [3288,] 5.389180e+02 0.00015463 4.026e-17
     [3289,] 5.404058e+02 0.00015421 -1.041e-16
     [3290,] 5.418978e+02 0.00015378 -5.531e-18
     [3291,] 5.433938e+02 0.00015336 -2.806e-17
     [3292,] 5.448940e+02 0.00015293 -4.799e-17
     [3293,] 5.463984e+02 0.00015251 -6.091e-17
     [3294,] 5.479068e+02 0.00015209 -1.417e-16
     [3295,] 5.494195e+02 0.00015168 -1.745e-16
     [3296,] 5.509363e+02 0.00015126 -1.248e-16
     [3297,] 5.524573e+02 0.00015084 -6.136e-17
     [3298,] 5.539825e+02 0.00015043 -1.269e-16
     [3299,] 5.555119e+02 0.00015001 -9.005e-17
     [3300,] 5.570456e+02 0.00014960 -2.677e-17
     [3301,] 5.585835e+02 0.00014919 -2.084e-16
     [3302,] 5.601256e+02 0.00014878 8.569e-17
     [3303,] 5.616720e+02 0.00014837 2.664e-17
     [3304,] 5.632226e+02 0.00014796 -8.87e-17
     [3305,] 5.647775e+02 0.00014755 -1.93e-16
     [3306,] 5.663368e+02 0.00014714 -4.502e-17
     [3307,] 5.679003e+02 0.00014674 -7.081e-17
     [3308,] 5.694681e+02 0.00014634 -3.084e-17
     [3309,] 5.710403e+02 0.00014593 3.968e-17
     [3310,] 5.726168e+02 0.00014553 -6.351e-17
     [3311,] 5.741977e+02 0.00014513 -5.676e-17
     [3312,] 5.757829e+02 0.00014473 -5.769e-17
     [3313,] 5.773725e+02 0.00014433 -6.75e-17
     [3314,] 5.789665e+02 0.00014393 -1.839e-16
     [3315,] 5.805649e+02 0.00014354 -9.909e-17
     [3316,] 5.821677e+02 0.00014314 -6.814e-17
     [3317,] 5.837749e+02 0.00014275 9.751e-17
     [3318,] 5.853866e+02 0.00014236 3.841e-17
     [3319,] 5.870027e+02 0.00014196 -1.465e-16
     [3320,] 5.886233e+02 0.00014157 -1.619e-16
     [3321,] 5.902483e+02 0.00014118 -7.966e-17
     [3322,] 5.918779e+02 0.00014079 -3.508e-17
     [3323,] 5.935119e+02 0.00014041 -5.88e-17
     [3324,] 5.951505e+02 0.00014002 -1.832e-16
     [3325,] 5.967936e+02 0.00013964 8.993e-17
     [3326,] 5.984412e+02 0.00013925 -7.523e-17
     [3327,] 6.000933e+02 0.00013887 -3.74e-17
     [3328,] 6.017500e+02 0.00013848 -1.474e-16
     [3329,] 6.034113e+02 0.00013810 -9.296e-17
     [3330,] 6.050772e+02 0.00013772 1.04e-16
     [3331,] 6.067477e+02 0.00013734 8.44e-18
     [3332,] 6.084228e+02 0.00013697 -1.428e-16
     [3333,] 6.101025e+02 0.00013659 -8.462e-17
     [3334,] 6.117869e+02 0.00013621 -4.455e-17
     [3335,] 6.134759e+02 0.00013584 7.394e-17
     [3336,] 6.151695e+02 0.00013546 -1.379e-16
     [3337,] 6.168679e+02 0.00013509 -2.754e-17
     [3338,] 6.185709e+02 0.00013472 -1.694e-17
     [3339,] 6.202786e+02 0.00013435 -1.67e-16
     [3340,] 6.219911e+02 0.00013398 -2.097e-16
     [3341,] 6.237083e+02 0.00013361 -1.056e-16
     [3342,] 6.254302e+02 0.00013324 -1.065e-16
     [3343,] 6.271568e+02 0.00013287 -1.399e-16
     [3344,] 6.288883e+02 0.00013251 -1.382e-16
     [3345,] 6.306245e+02 0.00013214 -3.832e-17
     [3346,] 6.323655e+02 0.00013178 -6.244e-17
     [3347,] 6.341113e+02 0.00013142 -6.597e-17
     [3348,] 6.358620e+02 0.00013106 -1.982e-16
     [3349,] 6.376174e+02 0.00013069 -1.727e-17
     [3350,] 6.393777e+02 0.00013034 4.899e-17
     [3351,] 6.411429e+02 0.00012998 -6.81e-17
     [3352,] 6.429130e+02 0.00012962 2.72e-17
     [3353,] 6.446879e+02 0.00012926 -9.928e-18
     [3354,] 6.464677e+02 0.00012891 -1.923e-16
     [3355,] 6.482525e+02 0.00012855 -6.233e-17
     [3356,] 6.500422e+02 0.00012820 7.372e-17
     [3357,] 6.518368e+02 0.00012784 8.561e-18
     [3358,] 6.536364e+02 0.00012749 -5.092e-17
     [3359,] 6.554409e+02 0.00012714 4.757e-17
     [3360,] 6.572504e+02 0.00012679 -7.467e-17
     [3361,] 6.590649e+02 0.00012644 -1.982e-16
     [3362,] 6.608845e+02 0.00012609 -3.669e-18
     [3363,] 6.627090e+02 0.00012575 -7.063e-17
     [3364,] 6.645386e+02 0.00012540 -1.493e-16
     [3365,] 6.663732e+02 0.00012506 2.339e-17
     [3366,] 6.682130e+02 0.00012471 -1.308e-16
     [3367,] 6.700577e+02 0.00012437 7.017e-17
     [3368,] 6.719076e+02 0.00012402 -4.156e-17
     [3369,] 6.737626e+02 0.00012368 -7.815e-19
     [3370,] 6.756227e+02 0.00012334 -8.281e-18
     [3371,] 6.774879e+02 0.00012300 -3.516e-17
     [3372,] 6.793583e+02 0.00012266 -4.444e-17
     [3373,] 6.812339e+02 0.00012233 -2.987e-17
     [3374,] 6.831146e+02 0.00012199 -8.084e-17
     [3375,] 6.850005e+02 0.00012165 -1.442e-18
     [3376,] 6.868917e+02 0.00012132 -2.547e-17
     [3377,] 6.887880e+02 0.00012099 -8.208e-17
     [3378,] 6.906896e+02 0.00012065 -9.541e-17
     [3379,] 6.925964e+02 0.00012032 -7.26e-17
     [3380,] 6.945085e+02 0.00011999 -1.064e-16
     [3381,] 6.964259e+02 0.00011966 1.794e-17
     [3382,] 6.983486e+02 0.00011933 -1.655e-17
     [3383,] 7.002766e+02 0.00011900 3.763e-17
     [3384,] 7.022099e+02 0.00011867 -1.486e-17
     [3385,] 7.041485e+02 0.00011835 -1.176e-16
     [3386,] 7.060925e+02 0.00011802 -1.579e-16
     [3387,] 7.080419e+02 0.00011770 -9.113e-17
     [3388,] 7.099966e+02 0.00011737 -1.151e-16
     [3389,] 7.119568e+02 0.00011705 -2.017e-17
     [3390,] 7.139223e+02 0.00011673 -1.277e-17
     [3391,] 7.158933e+02 0.00011640 1.106e-17
     [3392,] 7.178697e+02 0.00011608 5.068e-17
     [3393,] 7.198516e+02 0.00011576 -1.328e-16
     [3394,] 7.218389e+02 0.00011545 -1.57e-16
     [3395,] 7.238317e+02 0.00011513 -1.155e-17
     [3396,] 7.258301e+02 0.00011481 -1.291e-16
     [3397,] 7.278339e+02 0.00011449 -1.333e-16
     [3398,] 7.298433e+02 0.00011418 4.501e-18
     [3399,] 7.318582e+02 0.00011387 -7.179e-17
     [3400,] 7.338787e+02 0.00011355 -4.703e-17
     [3401,] 7.359048e+02 0.00011324 -2.595e-17
     [3402,] 7.379365e+02 0.00011293 -9.92e-17
     [3403,] 7.399738e+02 0.00011262 -1.134e-16
     [3404,] 7.420166e+02 0.00011231 -1.173e-16
     [3405,] 7.440652e+02 0.00011200 -1.714e-16
     [3406,] 7.461194e+02 0.00011169 6.674e-17
     [3407,] 7.481792e+02 0.00011138 -6.101e-17
     [3408,] 7.502448e+02 0.00011107 -1.06e-16
     [3409,] 7.523161e+02 0.00011077 -7.932e-17
     [3410,] 7.543930e+02 0.00011046 4.919e-17
     [3411,] 7.564757e+02 0.00011016 -9.229e-17
     [3412,] 7.585642e+02 0.00010986 -1.197e-16
     [3413,] 7.606584e+02 0.00010955 -2.465e-17
     [3414,] 7.627584e+02 0.00010925 -3.703e-17
     [3415,] 7.648642e+02 0.00010895 -9.847e-17
     [3416,] 7.669758e+02 0.00010865 -5.863e-17
     [3417,] 7.690933e+02 0.00010835 -1.222e-16
     [3418,] 7.712166e+02 0.00010805 -2.78e-17
     [3419,] 7.733457e+02 0.00010776 -8.673e-17
     [3420,] 7.754808e+02 0.00010746 -5.867e-17
     [3421,] 7.776217e+02 0.00010716 -1.082e-16
     [3422,] 7.797685e+02 0.00010687 -5.194e-17
     [3423,] 7.819213e+02 0.00010658 -3.261e-17
     [3424,] 7.840800e+02 0.00010628 1.818e-17
     [3425,] 7.862446e+02 0.00010599 -2.861e-17
     [3426,] 7.884153e+02 0.00010570 -3.117e-17
     [3427,] 7.905919e+02 0.00010541 -8.395e-17
     [3428,] 7.927746e+02 0.00010512 -2.429e-17
     [3429,] 7.949632e+02 0.00010483 -1.247e-17
     [3430,] 7.971579e+02 0.00010454 -5.918e-17
     [3431,] 7.993587e+02 0.00010425 -4.313e-17
     [3432,] 8.015656e+02 0.00010396 -1.495e-16
     [3433,] 8.037785e+02 0.00010368 -1.156e-17
     [3434,] 8.059976e+02 0.00010339 -1.018e-16
     [3435,] 8.082227e+02 0.00010311 -4.851e-17
     [3436,] 8.104540e+02 0.00010282 -7.258e-17
     [3437,] 8.126915e+02 0.00010254 -7.405e-17
     [3438,] 8.149352e+02 0.00010226 4.072e-17
     [3439,] 8.171850e+02 0.00010198 3.439e-17
     [3440,] 8.194411e+02 0.00010170 7.043e-17
     [3441,] 8.217034e+02 0.00010142 -6.385e-18
     [3442,] 8.239719e+02 0.00010114 5.402e-17
     [3443,] 8.262467e+02 0.00010086 -4.516e-17
     [3444,] 8.285278e+02 0.00010058 -9.339e-18
     [3445,] 8.308152e+02 0.00010030 -4.78e-17
     [3446,] 8.331089e+02 0.00010003 1.332e-17
     [3447,] 8.354089e+02 0.00009975 6.238e-17
     [3448,] 8.377153e+02 0.00009948 -8.603e-17
     [3449,] 8.400280e+02 0.00009920 -1.276e-16
     [3450,] 8.423471e+02 0.00009893 7.224e-18
     [3451,] 8.446726e+02 0.00009866 -9.149e-17
     [3452,] 8.470046e+02 0.00009839 -1.192e-16
     [3453,] 8.493430e+02 0.00009812 3.696e-17
     [3454,] 8.516878e+02 0.00009784 -1.641e-16
     [3455,] 8.540391e+02 0.00009758 -1.681e-16
     [3456,] 8.563969e+02 0.00009731 -4.664e-17
     [3457,] 8.587613e+02 0.00009704 3.416e-17
     [3458,] 8.611321e+02 0.00009677 4.015e-17
     [3459,] 8.635095e+02 0.00009651 -9.166e-17
     [3460,] 8.658934e+02 0.00009624 -5.044e-17
     [3461,] 8.682840e+02 0.00009597 -3.161e-17
     [3462,] 8.706811e+02 0.00009571 -1.595e-16
     [3463,] 8.730849e+02 0.00009545 -1.181e-16
     [3464,] 8.754953e+02 0.00009518 -7.351e-17
     [3465,] 8.779123e+02 0.00009492 -5.276e-17
     [3466,] 8.803360e+02 0.00009466 -1.393e-16
     [3467,] 8.827664e+02 0.00009440 -8.724e-17
     [3468,] 8.852035e+02 0.00009414 -1.491e-16
     [3469,] 8.876474e+02 0.00009388 -2.612e-17
     [3470,] 8.900980e+02 0.00009362 -1.689e-16
     [3471,] 8.925553e+02 0.00009336 -2.467e-17
     [3472,] 8.950195e+02 0.00009311 -1.111e-16
     [3473,] 8.974904e+02 0.00009285 -4.232e-17
     [3474,] 8.999682e+02 0.00009260 3.097e-17
     [3475,] 9.024528e+02 0.00009234 7.682e-17
     [3476,] 9.049443e+02 0.00009209 -1.31e-16
     [3477,] 9.074426e+02 0.00009183 -9.802e-17
     [3478,] 9.099478e+02 0.00009158 -1.5e-16
     [3479,] 9.124600e+02 0.00009133 -9.429e-17
     [3480,] 9.149791e+02 0.00009108 -1.273e-16
     [3481,] 9.175051e+02 0.00009083 -9.677e-17
     [3482,] 9.200382e+02 0.00009058 3.906e-17
     [3483,] 9.225782e+02 0.00009033 -6.265e-17
     [3484,] 9.251252e+02 0.00009008 -1.41e-16
     [3485,] 9.276793e+02 0.00008983 9.319e-18
     [3486,] 9.302404e+02 0.00008958 3.402e-18
     [3487,] 9.328086e+02 0.00008934 -4.291e-17
     [3488,] 9.353838e+02 0.00008909 -7.383e-17
     [3489,] 9.379662e+02 0.00008884 -4.606e-17
     [3490,] 9.405557e+02 0.00008860 2.586e-17
     [3491,] 9.431524e+02 0.00008836 -2.485e-17
     [3492,] 9.457562e+02 0.00008811 5.294e-17
     [3493,] 9.483672e+02 0.00008787 -1.099e-16
     [3494,] 9.509854e+02 0.00008763 -9.246e-17
     [3495,] 9.536109e+02 0.00008739 -8.41e-17
     [3496,] 9.562436e+02 0.00008715 7.258e-17
     [3497,] 9.588836e+02 0.00008691 -8.784e-17
     [3498,] 9.615308e+02 0.00008667 -9.904e-17
     [3499,] 9.641854e+02 0.00008643 4.825e-17
     [3500,] 9.668473e+02 0.00008619 -1.726e-16
     [3501,] 9.695165e+02 0.00008595 -1.128e-16
     [3502,] 9.721931e+02 0.00008572 -1.323e-17
     [3503,] 9.748772e+02 0.00008548 1.214e-17
     [3504,] 9.775686e+02 0.00008525 -1.257e-16
     [3505,] 9.802674e+02 0.00008501 -7.217e-17
     [3506,] 9.829737e+02 0.00008478 3.875e-17
     [3507,] 9.856875e+02 0.00008454 -4.374e-17
     [3508,] 9.884087e+02 0.00008431 -1.239e-16
     [3509,] 9.911375e+02 0.00008408 4.307e-17
     [3510,] 9.938738e+02 0.00008385 -2.654e-17
     [3511,] 9.966177e+02 0.00008362 -7.125e-17
     [3512,] 9.993691e+02 0.00008339 -1.05e-16
     [3513,] 1.002128e+03 0.00008316 1.283e-17
     [3514,] 1.004895e+03 0.00008293 -5.225e-17
     [3515,] 1.007669e+03 0.00008270 8.561e-18
     [3516,] 1.010451e+03 0.00008247 7.41e-17
     [3517,] 1.013241e+03 0.00008224 -6.368e-17
     [3518,] 1.016038e+03 0.00008202 -1.199e-16
     [3519,] 1.018843e+03 0.00008179 -6.802e-17
     [3520,] 1.021656e+03 0.00008157 -4.685e-17
     [3521,] 1.024476e+03 0.00008134 -9.203e-17
     [3522,] 1.027305e+03 0.00008112 -7.811e-17
     [3523,] 1.030141e+03 0.00008090 1.843e-17
     [3524,] 1.032985e+03 0.00008067 -8.243e-17
     [3525,] 1.035837e+03 0.00008045 1.449e-17
     [3526,] 1.038696e+03 0.00008023 1.603e-17
     [3527,] 1.041564e+03 0.00008001 -1.343e-16
     [3528,] 1.044439e+03 0.00007979 -1.936e-17
     [3529,] 1.047323e+03 0.00007957 -3.234e-17
     [3530,] 1.050214e+03 0.00007935 -3.308e-17
     [3531,] 1.053114e+03 0.00007913 2.076e-17
     [3532,] 1.056021e+03 0.00007891 -1.446e-16
     [3533,] 1.058937e+03 0.00007870 2.726e-17
     [3534,] 1.061860e+03 0.00007848 -5.238e-17
     [3535,] 1.064792e+03 0.00007826 -1.079e-16
     [3536,] 1.067731e+03 0.00007805 -1.859e-17
     [3537,] 1.070679e+03 0.00007783 4.57e-17
     [3538,] 1.073635e+03 0.00007762 -5.897e-17
     [3539,] 1.076599e+03 0.00007740 -7.78e-17
     [3540,] 1.079571e+03 0.00007719 -1.48e-16
     [3541,] 1.082552e+03 0.00007698 -8.082e-17
     [3542,] 1.085540e+03 0.00007677 4.255e-18
     [3543,] 1.088537e+03 0.00007656 -1.36e-16
     [3544,] 1.091543e+03 0.00007634 -1.869e-17
     [3545,] 1.094556e+03 0.00007613 -1.013e-16
     [3546,] 1.097578e+03 0.00007592 -1.553e-17
     [3547,] 1.100608e+03 0.00007572 4.703e-17
     [3548,] 1.103647e+03 0.00007551 3.113e-17
     [3549,] 1.106693e+03 0.00007530 -1.864e-16
     [3550,] 1.109749e+03 0.00007509 5.767e-17
     [3551,] 1.112813e+03 0.00007489 -1.098e-16
     [3552,] 1.115885e+03 0.00007468 3.118e-17
     [3553,] 1.118965e+03 0.00007447 4.592e-17
     [3554,] 1.122055e+03 0.00007427 2.888e-17
     [3555,] 1.125152e+03 0.00007406 -4.818e-17
     [3556,] 1.128259e+03 0.00007386 -2.69e-17
     [3557,] 1.131374e+03 0.00007366 -4.402e-17
     [3558,] 1.134497e+03 0.00007345 -9.457e-17
     [3559,] 1.137629e+03 0.00007325 2.813e-17
     [3560,] 1.140770e+03 0.00007305 2.951e-17
     [3561,] 1.143919e+03 0.00007285 -7.519e-17
     [3562,] 1.147077e+03 0.00007265 1.254e-17
     [3563,] 1.150244e+03 0.00007245 -5.445e-17
     [3564,] 1.153420e+03 0.00007225 -5.351e-17
     [3565,] 1.156604e+03 0.00007205 -1.232e-16
     [3566,] 1.159797e+03 0.00007185 7.292e-17
     [3567,] 1.162999e+03 0.00007165 -2.661e-17
     [3568,] 1.166210e+03 0.00007146 -9.814e-17
     [3569,] 1.169430e+03 0.00007126 3.908e-17
     [3570,] 1.172658e+03 0.00007106 -1.007e-16
     [3571,] 1.175895e+03 0.00007087 -6.215e-17
     [3572,] 1.179142e+03 0.00007067 -1.397e-16
     [3573,] 1.182397e+03 0.00007048 -1.648e-16
     [3574,] 1.185662e+03 0.00007028 -9.662e-17
     [3575,] 1.188935e+03 0.00007009 -1.616e-16
     [3576,] 1.192217e+03 0.00006990 6.107e-17
     [3577,] 1.195509e+03 0.00006971 -6.574e-17
     [3578,] 1.198809e+03 0.00006951 -3.389e-19
     [3579,] 1.202119e+03 0.00006932 6.897e-17
     [3580,] 1.205438e+03 0.00006913 -1.439e-16
     [3581,] 1.208766e+03 0.00006894 -3.21e-17
     [3582,] 1.212103e+03 0.00006875 2.334e-17
     [3583,] 1.215449e+03 0.00006856 -9.098e-17
     [3584,] 1.218805e+03 0.00006837 -8.976e-17
     [3585,] 1.222169e+03 0.00006818 -1.545e-17
     [3586,] 1.225544e+03 0.00006800 -2.036e-17
     [3587,] 1.228927e+03 0.00006781 -5.858e-17
     [3588,] 1.232320e+03 0.00006762 -9.189e-17
     [3589,] 1.235722e+03 0.00006744 -7.149e-17
     [3590,] 1.239134e+03 0.00006725 9.643e-17
     [3591,] 1.242554e+03 0.00006707 -8.651e-17
     [3592,] 1.245985e+03 0.00006688 7.814e-17
     [3593,] 1.249425e+03 0.00006670 4.397e-17
     [3594,] 1.252874e+03 0.00006651 -3.185e-17
     [3595,] 1.256333e+03 0.00006633 4.951e-17
     [3596,] 1.259801e+03 0.00006615 -1.664e-16
     [3597,] 1.263280e+03 0.00006597 -6.821e-17
     [3598,] 1.266767e+03 0.00006578 -8.587e-17
     [3599,] 1.270264e+03 0.00006560 -5.833e-17
     [3600,] 1.273771e+03 0.00006542 -1.19e-16
     [3601,] 1.277288e+03 0.00006524 -6.994e-17
     [3602,] 1.280814e+03 0.00006506 -2.973e-17
     [3603,] 1.284350e+03 0.00006488 -9.017e-17
     [3604,] 1.287896e+03 0.00006471 -4.654e-17
     [3605,] 1.291452e+03 0.00006453 -1.275e-16
     [3606,] 1.295017e+03 0.00006435 -7.327e-17
     [3607,] 1.298592e+03 0.00006417 -7.18e-17
     [3608,] 1.302177e+03 0.00006400 -1.443e-17
     [3609,] 1.305772e+03 0.00006382 -5.26e-17
     [3610,] 1.309377e+03 0.00006364 -5.119e-17
     [3611,] 1.312992e+03 0.00006347 8.597e-18
     [3612,] 1.316617e+03 0.00006329 -2.577e-18
     [3613,] 1.320252e+03 0.00006312 -1.754e-16
     [3614,] 1.323897e+03 0.00006295 -2.514e-18
     [3615,] 1.327552e+03 0.00006277 -1.007e-16
     [3616,] 1.331217e+03 0.00006260 -4.041e-17
     [3617,] 1.334892e+03 0.00006243 -1.074e-16
     [3618,] 1.338577e+03 0.00006226 -3.49e-17
     [3619,] 1.342273e+03 0.00006208 -1.103e-16
     [3620,] 1.345979e+03 0.00006191 -1.983e-16
     [3621,] 1.349695e+03 0.00006174 -5.009e-17
     [3622,] 1.353421e+03 0.00006157 -5.021e-17
     [3623,] 1.357157e+03 0.00006140 -9.781e-17
     [3624,] 1.360904e+03 0.00006123 -8.599e-18
     [3625,] 1.364661e+03 0.00006107 -1.226e-16
     [3626,] 1.368429e+03 0.00006090 1.292e-17
     [3627,] 1.372207e+03 0.00006073 -4.177e-17
     [3628,] 1.375995e+03 0.00006056 -1.236e-16
     [3629,] 1.379794e+03 0.00006040 -7.051e-17
     [3630,] 1.383603e+03 0.00006023 -5.291e-17
     [3631,] 1.387423e+03 0.00006006 -1.394e-16
     [3632,] 1.391253e+03 0.00005990 -1.138e-16
     [3633,] 1.395094e+03 0.00005973 1.939e-17
     [3634,] 1.398946e+03 0.00005957 -2.074e-17
     [3635,] 1.402808e+03 0.00005940 -1.164e-16
     [3636,] 1.406681e+03 0.00005924 -1.161e-16
     [3637,] 1.410564e+03 0.00005908 7.402e-18
     [3638,] 1.414459e+03 0.00005892 -1.71e-17
     [3639,] 1.418364e+03 0.00005875 1.1e-17
     [3640,] 1.422279e+03 0.00005859 -5.402e-17
     [3641,] 1.426206e+03 0.00005843 -6.225e-17
     [3642,] 1.430143e+03 0.00005827 -7.527e-17
     [3643,] 1.434092e+03 0.00005811 -4.165e-18
     [3644,] 1.438051e+03 0.00005795 -1.201e-16
     [3645,] 1.442021e+03 0.00005779 -7.807e-17
     [3646,] 1.446002e+03 0.00005763 -7.517e-17
     [3647,] 1.449994e+03 0.00005747 -5.211e-17
     [3648,] 1.453997e+03 0.00005731 -1.129e-16
     [3649,] 1.458011e+03 0.00005716 -5.893e-17
     [3650,] 1.462037e+03 0.00005700 -1.521e-16
     [3651,] 1.466073e+03 0.00005684 -1.752e-16
     [3652,] 1.470120e+03 0.00005668 -1.403e-16
     [3653,] 1.474179e+03 0.00005653 -7.47e-17
     [3654,] 1.478249e+03 0.00005637 -4.069e-17
     [3655,] 1.482330e+03 0.00005622 2.202e-17
     [3656,] 1.486422e+03 0.00005606 -1.237e-16
     [3657,] 1.490526e+03 0.00005591 -3.206e-17
     [3658,] 1.494641e+03 0.00005575 3.91e-17
     [3659,] 1.498768e+03 0.00005560 -1.702e-16
     [3660,] 1.502905e+03 0.00005545 9.242e-18
     [3661,] 1.507054e+03 0.00005530 -2.625e-17
     [3662,] 1.511215e+03 0.00005514 -6.395e-17
     [3663,] 1.515387e+03 0.00005499 -3.858e-17
     [3664,] 1.519571e+03 0.00005484 -2.754e-17
     [3665,] 1.523766e+03 0.00005469 -3.004e-17
     [3666,] 1.527973e+03 0.00005454 -5.85e-17
     [3667,] 1.532191e+03 0.00005439 -8.412e-17
     [3668,] 1.536421e+03 0.00005424 -8.455e-17
     [3669,] 1.540663e+03 0.00005409 -4.154e-17
     [3670,] 1.544916e+03 0.00005394 6.394e-17
     [3671,] 1.549181e+03 0.00005379 -7.244e-20
     [3672,] 1.553458e+03 0.00005364 -1.398e-16
     [3673,] 1.557747e+03 0.00005350 -8.396e-17
     [3674,] 1.562048e+03 0.00005335 -8.01e-17
     [3675,] 1.566360e+03 0.00005320 3.27e-18
     [3676,] 1.570685e+03 0.00005306 -8.454e-17
     [3677,] 1.575021e+03 0.00005291 -9.309e-17
     [3678,] 1.579369e+03 0.00005276 3.71e-18
     [3679,] 1.583729e+03 0.00005262 -1.028e-16
     [3680,] 1.588102e+03 0.00005247 -3.304e-17
     [3681,] 1.592486e+03 0.00005233 1.414e-17
     [3682,] 1.596883e+03 0.00005219 4.96e-17
     [3683,] 1.601291e+03 0.00005204 -1.989e-17
     [3684,] 1.605712e+03 0.00005190 -1.148e-16
     [3685,] 1.610145e+03 0.00005176 -9.93e-17
     [3686,] 1.614590e+03 0.00005161 6.555e-17
     [3687,] 1.619048e+03 0.00005147 -4.606e-17
     [3688,] 1.623518e+03 0.00005133 -1.228e-16
     [3689,] 1.628000e+03 0.00005119 -3.384e-17
     [3690,] 1.632494e+03 0.00005105 -5.306e-17
     [3691,] 1.637001e+03 0.00005091 -5.957e-17
     [3692,] 1.641521e+03 0.00005077 -1.269e-16
     [3693,] 1.646053e+03 0.00005063 -1.347e-18
     [3694,] 1.650597e+03 0.00005049 -6.426e-17
     [3695,] 1.655154e+03 0.00005035 -1.485e-17
     [3696,] 1.659723e+03 0.00005021 -8.448e-17
     [3697,] 1.664305e+03 0.00005007 -8.628e-17
     [3698,] 1.668900e+03 0.00004993 1.57e-17
     [3699,] 1.673508e+03 0.00004980 -1.264e-16
     [3700,] 1.678128e+03 0.00004966 -4.379e-17
     [3701,] 1.682761e+03 0.00004952 -1.681e-16
     [3702,] 1.687406e+03 0.00004939 -7.267e-17
     [3703,] 1.692065e+03 0.00004925 -4.469e-17
     [3704,] 1.696736e+03 0.00004911 1.699e-18
     [3705,] 1.701421e+03 0.00004898 -8.43e-17
     [3706,] 1.706118e+03 0.00004884 1.148e-17
     [3707,] 1.710828e+03 0.00004871 5.592e-17
     [3708,] 1.715551e+03 0.00004858 -1.781e-16
     [3709,] 1.720288e+03 0.00004844 -1.004e-16
     [3710,] 1.725037e+03 0.00004831 -7.922e-17
     [3711,] 1.729799e+03 0.00004818 -9.019e-17
     [3712,] 1.734575e+03 0.00004804 -8.536e-17
     [3713,] 1.739364e+03 0.00004791 -1.432e-16
     [3714,] 1.744166e+03 0.00004778 -3.821e-17
     [3715,] 1.748981e+03 0.00004765 -1.478e-16
     [3716,] 1.753809e+03 0.00004752 -7.768e-17
     [3717,] 1.758651e+03 0.00004738 -1.376e-16
     [3718,] 1.763507e+03 0.00004725 -4.8e-17
     [3719,] 1.768375e+03 0.00004712 -1.547e-17
     [3720,] 1.773257e+03 0.00004699 -1.38e-16
     [3721,] 1.778153e+03 0.00004687 -1.882e-17
     [3722,] 1.783062e+03 0.00004674 9.053e-17
     [3723,] 1.787985e+03 0.00004661 -4.799e-17
     [3724,] 1.792921e+03 0.00004648 -1.432e-16
     [3725,] 1.797871e+03 0.00004635 -1.745e-16
     [3726,] 1.802834e+03 0.00004622 -4.057e-17
     [3727,] 1.807811e+03 0.00004610 5.468e-17
     [3728,] 1.812802e+03 0.00004597 8.185e-17
     [3729,] 1.817807e+03 0.00004584 2.446e-17
     [3730,] 1.822826e+03 0.00004572 -3.867e-17
     [3731,] 1.827858e+03 0.00004559 -1.978e-17
     [3732,] 1.832904e+03 0.00004547 -1.174e-16
     [3733,] 1.837965e+03 0.00004534 -1.222e-16
     [3734,] 1.843039e+03 0.00004522 1.095e-17
     [3735,] 1.848127e+03 0.00004509 2.118e-17
     [3736,] 1.853229e+03 0.00004497 -1.28e-16
     [3737,] 1.858346e+03 0.00004484 -1.205e-17
     [3738,] 1.863476e+03 0.00004472 -7.78e-17
     [3739,] 1.868621e+03 0.00004460 -7.91e-17
     [3740,] 1.873779e+03 0.00004447 -1.533e-16
     [3741,] 1.878953e+03 0.00004435 -6.876e-17
     [3742,] 1.884140e+03 0.00004423 3.756e-17
     [3743,] 1.889342e+03 0.00004411 -1.339e-16
     [3744,] 1.894558e+03 0.00004399 -5.592e-17
     [3745,] 1.899788e+03 0.00004386 -1.816e-16
     [3746,] 1.905033e+03 0.00004374 -4.077e-17
     [3747,] 1.910292e+03 0.00004362 -1.185e-16
     [3748,] 1.915566e+03 0.00004350 8.353e-17
     [3749,] 1.920855e+03 0.00004338 -1.96e-17
     [3750,] 1.926158e+03 0.00004326 4.506e-17
     [3751,] 1.931475e+03 0.00004314 -1.721e-16
     [3752,] 1.936808e+03 0.00004303 -4.33e-17
     [3753,] 1.942155e+03 0.00004291 -7.382e-17
     [3754,] 1.947517e+03 0.00004279 -1.666e-16
     [3755,] 1.952893e+03 0.00004267 -8.824e-17
     [3756,] 1.958285e+03 0.00004255 -5.414e-17
     [3757,] 1.963691e+03 0.00004244 -4.423e-17
     [3758,] 1.969112e+03 0.00004232 -7.708e-17
     [3759,] 1.974549e+03 0.00004220 -6.857e-17
     [3760,] 1.980000e+03 0.00004209 -2.063e-17
     [3761,] 1.985466e+03 0.00004197 -5.418e-17
     [3762,] 1.990948e+03 0.00004186 2.622e-17
     [3763,] 1.996444e+03 0.00004174 5.325e-17
     [3764,] 2.001956e+03 0.00004163 2.516e-17
     [3765,] 2.007483e+03 0.00004151 -5.529e-17
     [3766,] 2.013025e+03 0.00004140 -1.241e-16
     [3767,] 2.018583e+03 0.00004128 -1.264e-16
     [3768,] 2.024155e+03 0.00004117 -1.83e-16
     [3769,] 2.029744e+03 0.00004106 -1.265e-17
     [3770,] 2.035347e+03 0.00004094 -1.199e-16
     [3771,] 2.040967e+03 0.00004083 3.137e-17
     [3772,] 2.046601e+03 0.00004072 6.408e-17
     [3773,] 2.052251e+03 0.00004061 -1.794e-16
     [3774,] 2.057917e+03 0.00004049 -1.398e-16
     [3775,] 2.063599e+03 0.00004038 -1.53e-16
     [3776,] 2.069296e+03 0.00004027 -1.067e-16
     [3777,] 2.075009e+03 0.00004016 -3.429e-17
     [3778,] 2.080737e+03 0.00004005 2.818e-17
     [3779,] 2.086482e+03 0.00003994 -3.002e-17
     [3780,] 2.092242e+03 0.00003983 -1.098e-16
     [3781,] 2.098018e+03 0.00003972 -8.385e-17
     [3782,] 2.103810e+03 0.00003961 -1.109e-16
     [3783,] 2.109618e+03 0.00003950 -5.542e-17
     [3784,] 2.115443e+03 0.00003939 -4.32e-17
     [3785,] 2.121283e+03 0.00003928 -4.265e-17
     [3786,] 2.127139e+03 0.00003918 -2.706e-17
     [3787,] 2.133012e+03 0.00003907 -9.061e-17
     [3788,] 2.138901e+03 0.00003896 -4.783e-17
     [3789,] 2.144806e+03 0.00003885 4.278e-17
     [3790,] 2.150727e+03 0.00003875 -8.23e-17
     [3791,] 2.156665e+03 0.00003864 3.203e-17
     [3792,] 2.162619e+03 0.00003853 -1.468e-16
     [3793,] 2.168589e+03 0.00003843 -1.271e-16
     [3794,] 2.174576e+03 0.00003832 1.288e-17
     [3795,] 2.180580e+03 0.00003822 -2.009e-16
     [3796,] 2.186600e+03 0.00003811 -1.604e-16
     [3797,] 2.192636e+03 0.00003801 -1.649e-16
     [3798,] 2.198690e+03 0.00003790 9.436e-17
     [3799,] 2.204760e+03 0.00003780 -1.263e-16
     [3800,] 2.210847e+03 0.00003769 -5.122e-17
     [3801,] 2.216950e+03 0.00003759 -1.515e-17
     [3802,] 2.223071e+03 0.00003749 -6.323e-18
     [3803,] 2.229208e+03 0.00003738 -2.742e-17
     [3804,] 2.235362e+03 0.00003728 -1.252e-16
     [3805,] 2.241534e+03 0.00003718 -1.667e-16
     [3806,] 2.247722e+03 0.00003707 -2.962e-17
     [3807,] 2.253928e+03 0.00003697 -7.133e-17
     [3808,] 2.260150e+03 0.00003687 -8.941e-17
     [3809,] 2.266390e+03 0.00003677 -4.322e-17
     [3810,] 2.272647e+03 0.00003667 -1.375e-17
     [3811,] 2.278921e+03 0.00003657 -9.648e-17
     [3812,] 2.285213e+03 0.00003647 8.282e-18
     [3813,] 2.291522e+03 0.00003637 -1.517e-16
     [3814,] 2.297848e+03 0.00003627 4.639e-17
     [3815,] 2.304192e+03 0.00003617 -2.149e-16
     [3816,] 2.310553e+03 0.00003607 -4.747e-17
     [3817,] 2.316932e+03 0.00003597 3.533e-17
     [3818,] 2.323329e+03 0.00003587 -6.234e-17
     [3819,] 2.329743e+03 0.00003577 -1.657e-16
     [3820,] 2.336175e+03 0.00003567 -1.056e-16
     [3821,] 2.342624e+03 0.00003557 -7.014e-17
     [3822,] 2.349092e+03 0.00003547 4.553e-17
     [3823,] 2.355577e+03 0.00003538 -1.434e-16
     [3824,] 2.362080e+03 0.00003528 -9.902e-17
     [3825,] 2.368602e+03 0.00003518 5.665e-17
     [3826,] 2.375141e+03 0.00003509 -3.357e-17
     [3827,] 2.381698e+03 0.00003499 -6.653e-17
     [3828,] 2.388273e+03 0.00003489 -3.208e-17
     [3829,] 2.394867e+03 0.00003480 -1.136e-16
     [3830,] 2.401478e+03 0.00003470 8.225e-17
     [3831,] 2.408108e+03 0.00003461 -1.761e-16
     [3832,] 2.414757e+03 0.00003451 -1.53e-17
     [3833,] 2.421423e+03 0.00003442 -7.309e-17
     [3834,] 2.428108e+03 0.00003432 -3.593e-18
     [3835,] 2.434812e+03 0.00003423 -2.661e-17
     [3836,] 2.441534e+03 0.00003413 -4.315e-17
     [3837,] 2.448274e+03 0.00003404 -3.709e-18
     [3838,] 2.455033e+03 0.00003394 9.43e-17
     [3839,] 2.461811e+03 0.00003385 6.451e-17
     [3840,] 2.468608e+03 0.00003376 -1.044e-16
     [3841,] 2.475423e+03 0.00003366 -1.568e-17
     [3842,] 2.482257e+03 0.00003357 3.081e-17
     [3843,] 2.489110e+03 0.00003348 -1.407e-16
     [3844,] 2.495982e+03 0.00003339 -2.143e-17
     [3845,] 2.502872e+03 0.00003330 -1.687e-16
     [3846,] 2.509782e+03 0.00003320 -1.942e-16
     [3847,] 2.516711e+03 0.00003311 -1.674e-16
     [3848,] 2.523659e+03 0.00003302 -3.108e-17
     [3849,] 2.530627e+03 0.00003293 -5.116e-18
     [3850,] 2.537613e+03 0.00003284 1.024e-16
     [3851,] 2.544619e+03 0.00003275 -6.132e-17
     [3852,] 2.551644e+03 0.00003266 -2.067e-17
     [3853,] 2.558688e+03 0.00003257 -1.49e-16
     [3854,] 2.565752e+03 0.00003248 -2.265e-18
     [3855,] 2.572836e+03 0.00003239 -1.26e-16
     [3856,] 2.579939e+03 0.00003230 -1.5e-16
     [3857,] 2.587062e+03 0.00003221 -3.873e-17
     [3858,] 2.594204e+03 0.00003212 -1.138e-16
     [3859,] 2.601366e+03 0.00003203 2.455e-17
     [3860,] 2.608548e+03 0.00003195 -1.328e-16
     [3861,] 2.615749e+03 0.00003186 -1.788e-16
     [3862,] 2.622971e+03 0.00003177 2.765e-17
     [3863,] 2.630212e+03 0.00003168 -1.051e-16
     [3864,] 2.637474e+03 0.00003160 -8.401e-17
     [3865,] 2.644755e+03 0.00003151 -1.15e-17
     [3866,] 2.652057e+03 0.00003142 -1.428e-17
     [3867,] 2.659378e+03 0.00003134 -6.852e-17
     [3868,] 2.666720e+03 0.00003125 -1.503e-16
     [3869,] 2.674082e+03 0.00003116 -1.898e-16
     [3870,] 2.681465e+03 0.00003108 -2.05e-16
     [3871,] 2.688868e+03 0.00003099 -1.661e-16
     [3872,] 2.696291e+03 0.00003091 -1.44e-16
     [3873,] 2.703735e+03 0.00003082 -1.424e-16
     [3874,] 2.711199e+03 0.00003074 -5.327e-17
     [3875,] 2.718684e+03 0.00003065 -4.684e-17
     [3876,] 2.726190e+03 0.00003057 -8.534e-17
     [3877,] 2.733716e+03 0.00003048 2.874e-17
     [3878,] 2.741264e+03 0.00003040 -4.514e-17
     [3879,] 2.748832e+03 0.00003032 -4.852e-17
     [3880,] 2.756421e+03 0.00003023 -9.1e-17
     [3881,] 2.764030e+03 0.00003015 -3.573e-17
     [3882,] 2.771661e+03 0.00003007 -7.354e-17
     [3883,] 2.779313e+03 0.00002998 -1.243e-16
     [3884,] 2.786986e+03 0.00002990 -1.503e-17
     [3885,] 2.794680e+03 0.00002982 -1.47e-16
     [3886,] 2.802396e+03 0.00002974 -1.236e-16
     [3887,] 2.810133e+03 0.00002965 -5.11e-17
     [3888,] 2.817891e+03 0.00002957 -7.118e-17
     [3889,] 2.825670e+03 0.00002949 -6.658e-17
     [3890,] 2.833471e+03 0.00002941 -8.621e-17
     [3891,] 2.841294e+03 0.00002933 -4.303e-17
     [3892,] 2.849138e+03 0.00002925 9.666e-18
     [3893,] 2.857004e+03 0.00002917 -9.295e-18
     [3894,] 2.864891e+03 0.00002909 -1.061e-16
     [3895,] 2.872801e+03 0.00002901 -9.266e-17
     [3896,] 2.880732e+03 0.00002893 -7.724e-17
     [3897,] 2.888685e+03 0.00002885 -8.863e-17
     [3898,] 2.896660e+03 0.00002877 -1.62e-16
     [3899,] 2.904657e+03 0.00002869 -1.184e-16
     [3900,] 2.912676e+03 0.00002861 -2.713e-17
     [3901,] 2.920717e+03 0.00002853 -1.873e-17
     [3902,] 2.928781e+03 0.00002845 6.231e-18
     [3903,] 2.936866e+03 0.00002837 -4.134e-17
     [3904,] 2.944974e+03 0.00002830 9.059e-18
     [3905,] 2.953105e+03 0.00002822 -3.359e-17
     [3906,] 2.961258e+03 0.00002814 -1.068e-16
     [3907,] 2.969433e+03 0.00002806 -1.376e-16
     [3908,] 2.977631e+03 0.00002799 -1.098e-16
     [3909,] 2.985852e+03 0.00002791 -8.982e-17
     [3910,] 2.994095e+03 0.00002783 -1.466e-16
     [3911,] 3.002361e+03 0.00002776 -1.928e-17
     [3912,] 3.010650e+03 0.00002768 -5.71e-17
     [3913,] 3.018961e+03 0.00002760 -1.69e-17
     [3914,] 3.027296e+03 0.00002753 5.728e-17
     [3915,] 3.035654e+03 0.00002745 -5.086e-17
     [3916,] 3.044034e+03 0.00002738 -9.653e-17
     [3917,] 3.052438e+03 0.00002730 -6.01e-17
     [3918,] 3.060865e+03 0.00002723 -9.807e-17
     [3919,] 3.069316e+03 0.00002715 -7.126e-17
     [3920,] 3.077789e+03 0.00002708 -7.521e-17
     [3921,] 3.086287e+03 0.00002700 -6.537e-17
     [3922,] 3.094807e+03 0.00002693 -3.102e-17
     [3923,] 3.103351e+03 0.00002685 8.157e-18
     [3924,] 3.111919e+03 0.00002678 -1.65e-16
     [3925,] 3.120510e+03 0.00002671 3.413e-17
     [3926,] 3.129125e+03 0.00002663 -2.298e-17
     [3927,] 3.137764e+03 0.00002656 -3.973e-17
     [3928,] 3.146427e+03 0.00002649 -8.173e-17
     [3929,] 3.155113e+03 0.00002641 -9.081e-17
     [3930,] 3.163824e+03 0.00002634 -6.771e-17
     [3931,] 3.172558e+03 0.00002627 -1.732e-16
     [3932,] 3.181317e+03 0.00002619 -7.4e-17
     [3933,] 3.190100e+03 0.00002612 -1.064e-16
     [3934,] 3.198907e+03 0.00002605 -7.915e-17
     [3935,] 3.207738e+03 0.00002598 -2.359e-17
     [3936,] 3.216594e+03 0.00002591 3.617e-17
     [3937,] 3.225475e+03 0.00002584 -5.183e-17
     [3938,] 3.234379e+03 0.00002576 2.238e-17
     [3939,] 3.243309e+03 0.00002569 -3.87e-17
     [3940,] 3.252263e+03 0.00002562 5.682e-17
     [3941,] 3.261241e+03 0.00002555 -1.871e-16
     [3942,] 3.270245e+03 0.00002548 -7.423e-17
     [3943,] 3.279273e+03 0.00002541 4.821e-17
     [3944,] 3.288327e+03 0.00002534 -3.775e-17
     [3945,] 3.297405e+03 0.00002527 -1.375e-16
     [3946,] 3.306508e+03 0.00002520 -1.905e-16
     [3947,] 3.315637e+03 0.00002513 -7.664e-17
     [3948,] 3.324791e+03 0.00002506 -1.868e-16
     [3949,] 3.333970e+03 0.00002500 -7.517e-18
     [3950,] 3.343174e+03 0.00002493 -7.008e-18
     [3951,] 3.352404e+03 0.00002486 -2.239e-16
     [3952,] 3.361659e+03 0.00002479 -2.46e-16
     [3953,] 3.370940e+03 0.00002472 -8.345e-17
     [3954,] 3.380246e+03 0.00002465 -1.515e-16
     [3955,] 3.389578e+03 0.00002459 -2.221e-16
     [3956,] 3.398936e+03 0.00002452 -1.989e-16
     [3957,] 3.408320e+03 0.00002445 -1.686e-16
     [3958,] 3.417729e+03 0.00002438 -2.022e-16
     [3959,] 3.427165e+03 0.00002432 -1.277e-16
     [3960,] 3.436627e+03 0.00002425 -1.29e-16
     [3961,] 3.446114e+03 0.00002418 -8.84e-17
     [3962,] 3.455628e+03 0.00002412 -2.065e-16
     [3963,] 3.465168e+03 0.00002405 -1.83e-16
     [3964,] 3.474735e+03 0.00002398 -8.013e-17
     [3965,] 3.484328e+03 0.00002392 -6.687e-17
     [3966,] 3.493947e+03 0.00002385 -1.904e-16
     [3967,] 3.503593e+03 0.00002379 -1.784e-16
     [3968,] 3.513266e+03 0.00002372 -6.836e-17
     [3969,] 3.522965e+03 0.00002365 -5.854e-17
     [3970,] 3.532691e+03 0.00002359 -7.628e-17
     [3971,] 3.542444e+03 0.00002352 -1.713e-16
     [3972,] 3.552224e+03 0.00002346 -1.799e-17
     [3973,] 3.562031e+03 0.00002339 -5.029e-17
     [3974,] 3.571865e+03 0.00002333 -1.563e-16
     [3975,] 3.581726e+03 0.00002327 -9.322e-17
     [3976,] 3.591614e+03 0.00002320 -3.243e-17
     [3977,] 3.601530e+03 0.00002314 -1.165e-16
     [3978,] 3.611473e+03 0.00002307 -1.538e-16
     [3979,] 3.621444e+03 0.00002301 -1.074e-16
     [3980,] 3.631442e+03 0.00002295 -9.083e-17
     [3981,] 3.641467e+03 0.00002288 -2.047e-16
     [3982,] 3.651520e+03 0.00002282 -9.817e-17
     [3983,] 3.661601e+03 0.00002276 -1.738e-16
     [3984,] 3.671710e+03 0.00002270 -5.416e-17
     [3985,] 3.681847e+03 0.00002263 -7.673e-17
     [3986,] 3.692012e+03 0.00002257 -1.504e-16
     [3987,] 3.702205e+03 0.00002251 -1.021e-16
     [3988,] 3.712425e+03 0.00002245 -1.176e-16
     [3989,] 3.722675e+03 0.00002239 -3.748e-17
     [3990,] 3.732952e+03 0.00002232 -1.269e-16
     [3991,] 3.743258e+03 0.00002226 -9.194e-17
     [3992,] 3.753592e+03 0.00002220 -5.19e-17
     [3993,] 3.763955e+03 0.00002214 -2.043e-18
     [3994,] 3.774346e+03 0.00002208 -1.161e-16
     [3995,] 3.784767e+03 0.00002202 -1.667e-16
     [3996,] 3.795215e+03 0.00002196 -3.703e-17
     [3997,] 3.805693e+03 0.00002190 -2.044e-16
     [3998,] 3.816200e+03 0.00002184 -1.83e-16
     [3999,] 3.826735e+03 0.00002178 -6.466e-17
     [4000,] 3.837300e+03 0.00002172 -1.668e-17
     [4001,] 3.847894e+03 0.00002166 -1.121e-16
     [4002,] 3.858517e+03 0.00002160 -2.22e-16
     [4003,] 3.869170e+03 0.00002154 -1.216e-16
     [4004,] 3.879852e+03 0.00002148 -7.758e-17
     [4005,] 3.890563e+03 0.00002142 -2.035e-16
     [4006,] 3.901304e+03 0.00002136 -8.265e-17
     [4007,] 3.912075e+03 0.00002130 -1.707e-16
     [4008,] 3.922875e+03 0.00002124 -2.187e-16
     [4009,] 3.933705e+03 0.00002118 -1.613e-16
     [4010,] 3.944565e+03 0.00002113 -1.033e-16
     [4011,] 3.955455e+03 0.00002107 -4.871e-17
     [4012,] 3.966375e+03 0.00002101 -8.547e-17
     [4013,] 3.977326e+03 0.00002095 -6.591e-17
     [4014,] 3.988306e+03 0.00002089 -1.161e-16
     [4015,] 3.999317e+03 0.00002084 -2.176e-16
     [4016,] 4.010358e+03 0.00002078 -9.896e-17
     [4017,] 4.021430e+03 0.00002072 -2.761e-17
     [4018,] 4.032532e+03 0.00002067 -2.111e-16
     [4019,] 4.043665e+03 0.00002061 -2.239e-16
     [4020,] 4.054828e+03 0.00002055 -1.33e-16
     [4021,] 4.066023e+03 0.00002050 -1.28e-16
     [4022,] 4.077248e+03 0.00002044 -3.278e-17
     [4023,] 4.088505e+03 0.00002038 -1.874e-16
     [4024,] 4.099792e+03 0.00002033 -1.027e-16
     [4025,] 4.111111e+03 0.00002027 -1.565e-16
     [4026,] 4.122460e+03 0.00002021 -8.387e-18
     [4027,] 4.133842e+03 0.00002016 -1.622e-16
     [4028,] 4.145254e+03 0.00002010 -8.65e-17
     [4029,] 4.156698e+03 0.00002005 -1.526e-16
     [4030,] 4.168174e+03 0.00001999 -3.823e-17
     [4031,] 4.179681e+03 0.00001994 -7.698e-17
     [4032,] 4.191221e+03 0.00001988 -2.121e-17
     [4033,] 4.202792e+03 0.00001983 2.608e-18
     [4034,] 4.214394e+03 0.00001977 -6.998e-17
     [4035,] 4.226029e+03 0.00001972 -7.092e-18
     [4036,] 4.237697e+03 0.00001966 -1.532e-16
     [4037,] 4.249396e+03 0.00001961 -1.991e-16
     [4038,] 4.261128e+03 0.00001956 -1.183e-16
     [4039,] 4.272892e+03 0.00001950 -4.438e-17
     [4040,] 4.284688e+03 0.00001945 -1.07e-17
     [4041,] 4.296517e+03 0.00001940 -2.231e-17
     [4042,] 4.308379e+03 0.00001934 -1.759e-17
     [4043,] 4.320273e+03 0.00001929 3.073e-17
     [4044,] 4.332200e+03 0.00001924 -1.112e-16
     [4045,] 4.344161e+03 0.00001918 -2.853e-17
     [4046,] 4.356154e+03 0.00001913 -3.555e-17
     [4047,] 4.368180e+03 0.00001908 -2.883e-17
     [4048,] 4.380240e+03 0.00001902 -3.857e-17
     [4049,] 4.392333e+03 0.00001897 1.474e-17
     [4050,] 4.404459e+03 0.00001892 -1.236e-16
     [4051,] 4.416619e+03 0.00001887 -3.911e-17
     [4052,] 4.428812e+03 0.00001882 -4.843e-17
     [4053,] 4.441039e+03 0.00001876 -3.831e-17
     [4054,] 4.453299e+03 0.00001871 -4.747e-17
     [4055,] 4.465594e+03 0.00001866 5.526e-17
     [4056,] 4.477923e+03 0.00001861 6.7e-17
     [4057,] 4.490285e+03 0.00001856 -9.339e-17
     [4058,] 4.502682e+03 0.00001851 -2.023e-18
     [4059,] 4.515113e+03 0.00001846 -1.519e-16
     [4060,] 4.527578e+03 0.00001841 -1.627e-16
     [4061,] 4.540077e+03 0.00001836 -1.978e-16
     [4062,] 4.552611e+03 0.00001830 -1.005e-16
     [4063,] 4.565180e+03 0.00001825 -1.556e-16
     [4064,] 4.577784e+03 0.00001820 -1.269e-17
     [4065,] 4.590422e+03 0.00001815 -8.607e-17
     [4066,] 4.603095e+03 0.00001810 -5.355e-17
     [4067,] 4.615803e+03 0.00001805 -2.019e-16
     [4068,] 4.628546e+03 0.00001800 -2.226e-16
     [4069,] 4.641325e+03 0.00001795 -5.26e-17
     [4070,] 4.654138e+03 0.00001791 -6.697e-17
     [4071,] 4.666987e+03 0.00001786 2.034e-18
     [4072,] 4.679872e+03 0.00001781 -1.175e-16
     [4073,] 4.692792e+03 0.00001776 6.692e-18
     [4074,] 4.705747e+03 0.00001771 -6.696e-17
     [4075,] 4.718739e+03 0.00001766 -8.089e-17
     [4076,] 4.731766e+03 0.00001761 -8.559e-17
     [4077,] 4.744830e+03 0.00001756 -4.276e-17
     [4078,] 4.757929e+03 0.00001751 -1.058e-16
     [4079,] 4.771065e+03 0.00001747 -4.105e-17
     [4080,] 4.784236e+03 0.00001742 -1.158e-16
     [4081,] 4.797445e+03 0.00001737 -1.687e-16
     [4082,] 4.810689e+03 0.00001732 6.829e-17
     [4083,] 4.823970e+03 0.00001727 -6.768e-17
     [4084,] 4.837288e+03 0.00001723 -5.583e-18
     [4085,] 4.850643e+03 0.00001718 -1.494e-16
     [4086,] 4.864034e+03 0.00001713 -1.535e-16
     [4087,] 4.877463e+03 0.00001709 -1.776e-16
     [4088,] 4.890929e+03 0.00001704 -1.214e-16
     [4089,] 4.904431e+03 0.00001699 3.946e-18
     [4090,] 4.917971e+03 0.00001694 4.615e-17
     [4091,] 4.931549e+03 0.00001690 -5.954e-17
     [4092,] 4.945164e+03 0.00001685 -9.589e-19
     [4093,] 4.958816e+03 0.00001681 -1.529e-17
     [4094,] 4.972506e+03 0.00001676 -6.325e-17
     [4095,] 4.986234e+03 0.00001671 -7.555e-17
     [4096,] 5.000000e+03 0.00001667 1.57e-17
     >
     > showProc.time()
     Time (user system elapsed): 99.25 0.14 100.98
     >
     > ## below, 7 "it's okay, but not perfect:" ===> need more terms in stirlerr() __or__ ??
     > ## April 20: MM added more terms up to S10
     > x <- sfsmisc::lseq(1, 7, length=2048)
     > system.time(stM <- DPQmpfr::stirlerrM(Rmpfr::mpfr(x,2048))) # 1.52 sec elapsed
     user system elapsed
     49.89 0.02 50.77
     > plot(x, stirlerr(x, use.halves=FALSE) - stM, type="l", log="x", main="absolute Error")
     > plot(x, stirlerr(x, use.halves=FALSE) / stM - 1, type="l", log="x", main="relative Error")
     > plot(x, abs(stirlerr(x, use.halves=FALSE) / stM - 1), type="l", log="xy",main="|relative Error|")
     > abline(h=c(1,2,4)*.Machine$double.eps, lty=3)
     > ## lgammacor() does *NOT* help, as it is *designed* for x >= 10!
     > lines(x, abs(lgammacor(x, 5) / stM - 1), col=2)
     > ## maybe look at it for x >= 9 or so ?
     > ##
     > ## ==> Need another chebyshev() or rational-approx. for x in [.1, 7] or so !!
     >
     > showProc.time()
     Time (user system elapsed): 50.53 0.02 51.4
     >
     > <0c>
     >
     >
     > ###--------------- bd0() & ebd0() ------------------------------------------------------
     >
     >
     > ## ebd0 constants: the column sums of "bd0_scale": log(n / 1024) for all these n
     > ## ---- according to the *comments* in the C code -- so here I test that at least the *sums* are correct
     > bd0.n <- c(2048,2032,2016,2001,1986,1971,1956,1942,1928,1913,1900,1886,1872,1859,
     + 1846,1833,1820,1808,1796,1783,1771,1759,1748,1736,1725,1713,1702,1691,
     + 1680,1670,1659,1649,1638,1628,1618,1608,1598,1589,1579,1570,1560,1551,
     + 1542,1533,1524,1515,1507,1498,1489,1481,1473,1464,1456,1448,1440,1432,
     + 1425,1417,1409,1402,1394,1387,1380,1372,1365,1358,1351,1344,1337,1331,
     + 1324,1317,1311,1304,1298,1291,1285,1279,1273,1266,1260,1254,1248,1242,
     + 1237,1231,1225,1219,1214,1208,1202,1197,1192,1186,1181,1176,1170,1165,
     + 1160,1155,1150,1145,1140,1135,1130,1125,1120,1116,1111,1106,1101,1097,
     + 1092,1088,1083,1079,1074,1070,1066,1061,1057,1053,1049,1044,1040,1036,
     + 1032,1028,1024)
     >
     > stopifnot(
     + all.equal(bd0.n,
     + 1024 * exp(colSums(DPQ:::logf_mat)))
     + ) ## on lynne (64-bit, Fedora 32, 2021) they are even *identical*
     > identical(bd0.n, 1024 * exp(colSums(DPQ:::logf_mat))) # amazingly to me
     [1] TRUE
     >
     > ## Also, the numbers themselves decrease monotonely,
     > ## their differences are close to, but *not* monotone:
     > diff(bd0.n) # -16 -16 -15 -15 -15 -15 -14 -14 -15 -13 -14 ...
     [1] -16 -16 -15 -15 -15 -15 -14 -14 -15 -13 -14 -14 -13 -13 -13 -13 -12 -12
     [19] -13 -12 -12 -11 -12 -11 -12 -11 -11 -11 -10 -11 -10 -11 -10 -10 -10 -10
     [37] -9 -10 -9 -10 -9 -9 -9 -9 -9 -8 -9 -9 -8 -8 -9 -8 -8 -8
     [55] -8 -7 -8 -8 -7 -8 -7 -7 -8 -7 -7 -7 -7 -7 -6 -7 -7 -6
     [73] -7 -6 -7 -6 -6 -6 -7 -6 -6 -6 -6 -5 -6 -6 -6 -5 -6 -6
     [91] -5 -5 -6 -5 -5 -6 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -5
     [109] -5 -5 -4 -5 -4 -5 -4 -5 -4 -4 -5 -4 -4 -4 -5 -4 -4 -4
     [127] -4 -4
     > # ^^^^^^^^^^^^^^ (etc)
     >
     > if(do.pdf) { dev.off(); pdf("diff-bd0_tab.pdf") }
     >
     > plot(diff(bd0.n), type="b")
     > c2 <- adjustcolor(2, 1/2)
     > par(new=TRUE)
     > plot(diff(bd0.n, differences = 2), type="b", col=c2, axes=FALSE, ann=FALSE)
     > axis(4, at=-1:2, col=c2, col.axis=c2)
     >
     > showProc.time()
     Time (user system elapsed): 0.01 0 0.02
     >
     > ## close to over-/underflow -------
     >
     > ### Large lambda == np == M -------
     >
     > if(do.pdf) { dev.off(); pdf("stirlerr-bd0-ebd0.pdf") }
     > ##-- FIXME: use functionality from ~/R/MM/NUMERICS/dpq-functions/15628-dpois_raw_accuracy.R
     > ##-- ----- *or* move to vignette
     >
     > LL <- 1e20
     > dput(x1 <- 1e20 - 2e11) # 9.99999998e+19
     9.99999998e+19
     >
     > (P1 <- dpois (x1, LL)) # was 3.989455e-11; now 5.520993e-98
     [1] 5.520993e-98
     > (P1m <- Rmpfr::dpois(mpfr(x1, 128), LL)) # 5.52099285934214335003128935..e-98
     1 'mpfr' number of precision 128 bits
     [1] 5.520992859342143350031289352677120249641e-98
     > ## However -- the ebd0() version
     > (P1e <- dpois_raw(x1, LL, version="ebd0_v1"))
     [1] 5.520993e-98
     > ## was 3.989455e-11, but now good!
     > stopifnot(exprs = {
     + all.equal(P1 , 5.520992859342e-98, tol=1e-12)
     + all.equal(P1e, P1, tol=1e-12)
     + all.equal(P1m, P1, tol=1e-12)
     + })
     >
     > options(digits=9)
     >
     > ## indeed: regular bd0() works "ok" --- but ebd0() does non-sense !!
     > (bd.1 <- bd0(x1, LL, verbose=2))
     bd0(1e+20, 1e+20): T.series w/ 2 terms -> bd0=200
     [1] 199.999992
     > ## bd0(1e+20, 1e+20): T.series w/ 2 terms -> bd0=200
     > ## [1] 200
     > (bd.1M <- bd0(x1, mpfr(LL, 128), verbose=2))
     bd0(1e+20, 1e+20): T.series w/ 3 terms -> bd0=200
     1 'mpfr' number of precision 128 bits
     [1] 199.9999919413334091607468236761591740489
     > ## bd0(1e+20, 1e+20): T.series w/ 3 terms -> bd0=200
     > ## ---> 199.9999919413334091607468236761591740489
     > asNumeric(bd.1 / bd.1M - 1)# -1.82e-17 -- suggests bd0() is really accurate here
     [1] -1.8200191e-17
     > stopifnot(abs(bd.1 / bd.1M - 1) < 3e-16,
     + all.equal(199.999991941333, bd.1, tol=1e-14))
     >
     > ebd0(x1, LL, verbose=TRUE)# fixed since June 6, 2021
     ebd0(x=1e+20, M=1e+20): M/x = (r=0.500000001) * 2^(e=1); i=0,
     f=2048, fg=f*2^-(e+10)=1
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = 1.99999996304e-09
     1a. before adding -x * log1pmx(.) = -x * -2e-18 = 200
     1. after A.(-x*l..): yl,yh = ( -8.05867e-06, 200); yl+yh= 200
     ___ fg = 1 ___ skipping further steps
     [,1]
     yh 2.00000000e+02
     yl -8.05866662e-06
     >
     > showProc.time()
     Time (user system elapsed): 0.07 0 0.06
     >
     > ### Large x -- small np == M ------------------------------------
     >
     >
     > mpfrPrec <- 1024
     > mpfrPrec <- 256
     >
     > yy <- bd0 (1e307, 10^(-5:1), verbose=TRUE)
     > yhl <- ebd0 (1e307, 10^(-5:1), verbose=TRUE)
     ebd0(x=1e+307, M=1e-05): M/x = (r=0.736335108038475) * 2^(e=-1036); i=61,
     f=1387, fg=f*2^-(e+10)=Inf
     --> fg = +Inf --> return( +Inf )
     ebd0(x=1e+307, M=0.0001): M/x = (r=0.920418885049457) * 2^(e=-1033); i=108,
     f=1111, fg=f*2^-(e+10)=Inf
     --> fg = +Inf --> return( +Inf )
     ebd0(x=1e+307, M=0.001): M/x = (r=0.575261803155939) * 2^(e=-1029); i=19,
     f=1783, fg=f*2^-(e+10)=Inf
     --> fg = +Inf --> return( +Inf )
     ebd0(x=1e+307, M=0.01): M/x = (r=0.719077253944928) * 2^(e=-1026); i=56,
     f=1425, fg=f*2^-(e+10)=Inf
     --> fg = +Inf --> return( +Inf )
     ebd0(x=1e+307, M=0.1): M/x = (r=0.898846567431158) * 2^(e=-1023); i=102,
     f=1140, fg=f*2^-(e+10)=1.00067e+308
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.107312 -4.72853e-09 -4.29763e-16 5.35114e-24 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = 0.0006690301479688298
     1a. before adding -x * log1pmx(.) = -x * -2.23701e-07 = 2.23701e+300
     1. after A.(-x*l..): yl,yh = ( 0, 2.23701e+300); yl+yh= 2.23701e+300
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 1.07312e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=1): M/x = (r=0.561779104644474) * 2^(e=-1019); i=16,
     f=1820, fg=f*2^-(e+10)=9.98475e+306
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419479548646
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=10): M/x = (r=0.702223880805592) * 2^(e=-1016); i=52,
     f=1456, fg=f*2^-(e+10)=9.98475e+305
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.351976 2.85039e-08 -9.56643e-16 -6.4096e-24 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419479548646
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 3.51978e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     > yhlC<- ebd0C(1e307, 10^(-5:1))
     > stopifnot(yy == Inf, colSums(yhl) == Inf, yhlC == yhl)
     > yM <- bd0(mpfr(1e307, mpfrPrec), 10^(-5:1))
     > roundMpfr(range(yM), 12) ## 7.0363e+309 7.1739e+309 -- *are* larger than DBL_MAX
     2 'mpfr' numbers of precision 12 bits
     [1] 7.0363e+309 7.1739e+309
     >
     >
     > ### Now *BOTH* x and lambda are large : ---------------------------------------
     > ## (FIXME?? Small loss for ebd0, see below) <<< ???
     > ## is bd0(<mpfr>, *) really accurate ???
     > ## it uses it's own convergent series approxmation for |x-np| < .. ????
     >
     > x. <- 1e307
     > ebd0(x., 10^(300:308))
     [,1] [,2] [,3] [,4]
     yh 1.51180958e+308 1.28155116e+308 1.05129355e+308 8.21044037e+307
     yl 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
     [,5] [,6] [,7] [,8] [,9]
     yh 5.90875528e+307 3.61517019e+307 1.40258509e+307 0 6.69741491e+307
     yl 0.00000000e+00 0.00000000e+00 0.00000000e+00 0 0.00000000e+00
     >
     > stopifnot(is.finite(Llam <- 2^(990:1024 - 1e-12)))
     >
     > bd0ver <- function(x, np, mpfrPrec, chkVerb=TRUE, keepMpfr=FALSE) {
     + stopifnot(length(mpfrPrec <- as.integer(mpfrPrec)) == 1,
     + !is.na(mpfrPrec), mpfrPrec >= 64,
     + x >= 0, np >= 0)
     + yy <- bd0 (x, np)
     + yhl <- ebd0 (x, np)
     + yhlC <- ebd0C(x, np)
     + if(chkVerb) {
     + yhl. <- ebd0 (x, np, verbose=TRUE)
     + yhlC. <- ebd0C(x, np, verbose=TRUE)
     + stopifnot(identical(yhl., yhl),
     + identical(yhlC., yhlC))
     + }
     + epsC <- .Machine$double.eps
     + aeq0 <- all.equal(yhl, yhlC, tol = 0)
     + aeq4 <- all.equal(yhl, yhlC, tol = 4*epsC)
     + if(!isTRUE(aeq4)) warning("the C and R versions of ebd0() differ:", aeq4)
     + stopifnot(is.whole(yhl ["yh",]),
     + is.whole(yhlC["yh",]))
     + yM <- bd0(mpfr(x, mpfrPrec),
     + mpfr(np,mpfrPrec), verbose=chkVerb)# more accurate ! (?? always ??)
     + relE <- relErrV(target = yM, # the mpfr one
     + cbind(ebd0 = yhl ["yh",] + yhl ["yl",],
     + ebd0C= yhlC["yh",] + yhlC["yl",],
     + bd0 = yy))
     + relE <- structure(asNumeric(relE), dim=dim(relE), dimnames=dimnames(relE))
     + ## return:
     + list(x=x, np=np, bd0=yy, ebd0=yhl, ebd0C=yhlC,
     + bd0M=if(keepMpfr) yM, # <- expensive
     + aeq0=aeq0, aeq4=aeq4, relE = relE)
     + }
     >
     > bd0v.8 <- bd0ver(x., Llam, mpfrPrec = 256)
     ebd0(x=1e+307, M=1.0464e+298): M/x = (r=0.561779104644075) * 2^(e=-29); i=16,
     f=1820, fg=f*2^-(e+10)=9.54204e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=2.09279e+298): M/x = (r=0.561779104644075) * 2^(e=-28); i=16,
     f=1820, fg=f*2^-(e+10)=4.77102e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=4.18558e+298): M/x = (r=0.561779104644075) * 2^(e=-27); i=16,
     f=1820, fg=f*2^-(e+10)=2.38551e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=8.37116e+298): M/x = (r=0.561779104644075) * 2^(e=-26); i=16,
     f=1820, fg=f*2^-(e+10)=1.19276e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=1.67423e+299): M/x = (r=0.561779104644075) * 2^(e=-25); i=16,
     f=1820, fg=f*2^-(e+10)=5.96378e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=2: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=3: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=4: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     3. after ADD1(M): yl,yh = ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.69053e+308); yl+yh= 1.69053e+308
    
     ebd0(x=1e+307, M=3.34846e+299): M/x = (r=0.561779104644075) * 2^(e=-24); i=16,
     f=1820, fg=f*2^-(e+10)=2.98189e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=2: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=3: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=4: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     3. after ADD1(M): yl,yh = ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.62122e+308); yl+yh= 1.62122e+308
    
     ebd0(x=1e+307, M=6.69693e+299): M/x = (r=0.561779104644075) * 2^(e=-23); i=16,
     f=1820, fg=f*2^-(e+10)=1.49094e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=2: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=3: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=4: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     3. after ADD1(M): yl,yh = ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.5519e+308); yl+yh= 1.5519e+308
    
     ebd0(x=1e+307, M=1.33939e+300): M/x = (r=0.561779104644075) * 2^(e=-22); i=16,
     f=1820, fg=f*2^-(e+10)=7.45472e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=2: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=3: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=4: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     3. after ADD1(M): yl,yh = ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.48259e+308); yl+yh= 1.48259e+308
    
     ebd0(x=1e+307, M=2.67877e+300): M/x = (r=0.561779104644075) * 2^(e=-21); i=16,
     f=1820, fg=f*2^-(e+10)=3.72736e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=2: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=3: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=4: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     3. after ADD1(M): yl,yh = ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.41327e+308); yl+yh= 1.41327e+308
    
     ebd0(x=1e+307, M=5.35754e+300): M/x = (r=0.561779104644075) * 2^(e=-20); i=16,
     f=1820, fg=f*2^-(e+10)=1.86368e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=2: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=3: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=4: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     3. after ADD1(M): yl,yh = ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.34396e+308); yl+yh= 1.34396e+308
    
     ebd0(x=1e+307, M=1.07151e+301): M/x = (r=0.561779104644075) * 2^(e=-19); i=16,
     f=1820, fg=f*2^-(e+10)=931840
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=2: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=3: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=4: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     3. after ADD1(M): yl,yh = ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.27464e+308); yl+yh= 1.27464e+308
    
     ebd0(x=1e+307, M=2.14302e+301): M/x = (r=0.561779104644075) * 2^(e=-18); i=16,
     f=1820, fg=f*2^-(e+10)=465920
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=2: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=3: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=4: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     3. after ADD1(M): yl,yh = ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.20533e+308); yl+yh= 1.20533e+308
    
     ebd0(x=1e+307, M=4.28603e+301): M/x = (r=0.561779104644075) * 2^(e=-17); i=16,
     f=1820, fg=f*2^-(e+10)=232960
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=2: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=3: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=4: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     3. after ADD1(M): yl,yh = ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.13602e+308); yl+yh= 1.13602e+308
    
     ebd0(x=1e+307, M=8.57207e+301): M/x = (r=0.561779104644075) * 2^(e=-16); i=16,
     f=1820, fg=f*2^-(e+10)=116480
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=2: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=3: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=4: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     3. after ADD1(M): yl,yh = ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.0667e+308); yl+yh= 1.0667e+308
    
     ebd0(x=1e+307, M=1.71441e+302): M/x = (r=0.561779104644075) * 2^(e=-15); i=16,
     f=1820, fg=f*2^-(e+10)=58240
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=2: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=3: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=4: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     3. after ADD1(M): yl,yh = ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.97387e+307); yl+yh= 9.97387e+307
    
     ebd0(x=1e+307, M=3.42883e+302): M/x = (r=0.561779104644075) * 2^(e=-14); i=16,
     f=1820, fg=f*2^-(e+10)=29120
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=2: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=3: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=4: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     3. after ADD1(M): yl,yh = ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.28074e+307); yl+yh= 9.28074e+307
    
     ebd0(x=1e+307, M=6.85766e+302): M/x = (r=0.561779104644075) * 2^(e=-13); i=16,
     f=1820, fg=f*2^-(e+10)=14560
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=2: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=3: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=4: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     3. after ADD1(M): yl,yh = ( 0, 9.5861e+307); yl+yh= 9.5861e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 8.58763e+307); yl+yh= 8.58763e+307
    
     ebd0(x=1e+307, M=1.37153e+303): M/x = (r=0.561779104644075) * 2^(e=-12); i=16,
     f=1820, fg=f*2^-(e+10)=7280
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=2: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=3: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=4: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     3. after ADD1(M): yl,yh = ( 0, 8.89302e+307); yl+yh= 8.89302e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.89455e+307); yl+yh= 7.89455e+307
    
     ebd0(x=1e+307, M=2.74306e+303): M/x = (r=0.561779104644075) * 2^(e=-11); i=16,
     f=1820, fg=f*2^-(e+10)=3640
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=2: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=3: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=4: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     3. after ADD1(M): yl,yh = ( 0, 8.20001e+307); yl+yh= 8.20001e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.20154e+307); yl+yh= 7.20154e+307
    
     ebd0(x=1e+307, M=5.48612e+303): M/x = (r=0.561779104644075) * 2^(e=-10); i=16,
     f=1820, fg=f*2^-(e+10)=1820
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=2: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=3: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=4: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     3. after ADD1(M): yl,yh = ( 0, 7.50714e+307); yl+yh= 7.50714e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 6.50867e+307); yl+yh= 6.50867e+307
    
     ebd0(x=1e+307, M=1.09722e+304): M/x = (r=0.561779104644075) * 2^(e=-9); i=16,
     f=1820, fg=f*2^-(e+10)=910
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=2: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=3: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=4: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     3. after ADD1(M): yl,yh = ( 0, 6.81454e+307); yl+yh= 6.81454e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.81607e+307); yl+yh= 5.81607e+307
    
     ebd0(x=1e+307, M=2.19445e+304): M/x = (r=0.561779104644075) * 2^(e=-8); i=16,
     f=1820, fg=f*2^-(e+10)=455
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=2: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=3: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=4: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     3. after ADD1(M): yl,yh = ( 0, 6.12249e+307); yl+yh= 6.12249e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.12402e+307); yl+yh= 5.12402e+307
    
     ebd0(x=1e+307, M=4.3889e+304): M/x = (r=0.561779104644075) * 2^(e=-7); i=16,
     f=1820, fg=f*2^-(e+10)=227.5
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=2: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=3: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=4: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     3. after ADD1(M): yl,yh = ( 0, 5.43154e+307); yl+yh= 5.43154e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.43307e+307); yl+yh= 4.43307e+307
    
     ebd0(x=1e+307, M=8.7778e+304): M/x = (r=0.561779104644075) * 2^(e=-6); i=16,
     f=1820, fg=f*2^-(e+10)=113.75
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=2: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=3: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=4: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     3. after ADD1(M): yl,yh = ( 0, 4.74278e+307); yl+yh= 4.74278e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.74431e+307); yl+yh= 3.74431e+307
    
     ebd0(x=1e+307, M=1.75556e+305): M/x = (r=0.561779104644075) * 2^(e=-5); i=16,
     f=1820, fg=f*2^-(e+10)=56.875
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=2: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=3: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=4: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     3. after ADD1(M): yl,yh = ( 0, 4.05841e+307); yl+yh= 4.05841e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.05994e+307); yl+yh= 3.05994e+307
    
     ebd0(x=1e+307, M=3.51112e+305): M/x = (r=0.561779104644075) * 2^(e=-4); i=16,
     f=1820, fg=f*2^-(e+10)=28.4375
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=2: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=3: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=4: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     3. after ADD1(M): yl,yh = ( 0, 3.38282e+307); yl+yh= 3.38282e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 2.38435e+307); yl+yh= 2.38435e+307
    
     ebd0(x=1e+307, M=7.02224e+305): M/x = (r=0.561779104644075) * 2^(e=-3); i=16,
     f=1820, fg=f*2^-(e+10)=14.2188
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=2: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=3: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=4: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     3. after ADD1(M): yl,yh = ( 0, 2.72479e+307); yl+yh= 2.72479e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.72631e+307); yl+yh= 1.72631e+307
    
     ebd0(x=1e+307, M=1.40445e+306): M/x = (r=0.561779104644075) * 2^(e=-2); i=16,
     f=1820, fg=f*2^-(e+10)=7.10938
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=2: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=3: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=4: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     3. after ADD1(M): yl,yh = ( 0, 2.10186e+307); yl+yh= 2.10186e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.10339e+307); yl+yh= 1.10339e+307
    
     ebd0(x=1e+307, M=2.8089e+306): M/x = (r=0.561779104644075) * 2^(e=-1); i=16,
     f=1820, fg=f*2^-(e+10)=3.55469
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=2: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=3: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=4: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     3. after ADD1(M): yl,yh = ( 0, 1.54916e+307); yl+yh= 1.54916e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.50683e+306); yl+yh= 5.50683e+306
    
     ebd0(x=1e+307, M=5.61779e+306): M/x = (r=0.561779104644075) * 2^(e=0); i=16,
     f=1820, fg=f*2^-(e+10)=1.77734
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=2: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=3: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=4: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     3. after ADD1(M): yl,yh = ( 0, 1.1369e+307); yl+yh= 1.1369e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.38426e+306); yl+yh= 1.38426e+306
    
     ebd0(x=1e+307, M=1.12356e+307): M/x = (r=0.561779104644075) * 2^(e=1); i=16,
     f=1820, fg=f*2^-(e+10)=0.888672
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=2: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=3: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=4: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     3. after ADD1(M): yl,yh = ( 0, 1.00553e+307); yl+yh= 1.00553e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.05759e+304); yl+yh= 7.05759e+304
    
     ebd0(x=1e+307, M=2.24712e+307): M/x = (r=0.561779104644075) * 2^(e=2); i=16,
     f=1820, fg=f*2^-(e+10)=0.444336
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=2: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=3: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=4: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     3. after ADD1(M): yl,yh = ( 0, 1.43594e+307); yl+yh= 1.43594e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.37469e+306); yl+yh= 4.37469e+306
    
     ebd0(x=1e+307, M=4.49423e+307): M/x = (r=0.561779104644075) * 2^(e=3); i=16,
     f=1820, fg=f*2^-(e+10)=0.222168
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=2: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=3: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=4: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     3. after ADD1(M): yl,yh = ( 0, 2.98991e+307); yl+yh= 2.98991e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.99144e+307); yl+yh= 1.99144e+307
    
     ebd0(x=1e+307, M=8.98847e+307): M/x = (r=0.561779104644075) * 2^(e=4); i=16,
     f=1820, fg=f*2^-(e+10)=0.111084
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=2: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=3: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=4: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     3. after ADD1(M): yl,yh = ( 0, 6.791e+307); yl+yh= 6.791e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.79252e+307); yl+yh= 5.79252e+307
    
     ebd0(x=1e+307, M=1.79769e+308): M/x = (r=0.561779104644075) * 2^(e=5); i=16,
     f=1820, fg=f*2^-(e+10)=0.055542
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=2: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=3: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=4: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     3. after ADD1(M): yl,yh = ( 0, 1.50863e+308); yl+yh= 1.50863e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.40878e+308); yl+yh= 1.40878e+308
    
     dpq_ebd0(x[1:1], np[1:35], ... ):
     ebd0(x=1e+307, M=4.18558e+298): M/x = (r=0.561779104644075) * 2^(e=-27); i=16,
     f=1820, fg=f*2^-(e+10)=2.38551e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( nan, inf); yl+yh= nan
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=8.37116e+298): M/x = (r=0.561779104644075) * 2^(e=-26); i=16,
     f=1820, fg=f*2^-(e+10)=1.19276e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( nan, inf); yl+yh= nan
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=1.67423e+299): M/x = (r=0.561779104644075) * 2^(e=-25); i=16,
     f=1820, fg=f*2^-(e+10)=5.96378e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=1: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=2: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=3: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     3. after ADD1(M): yl,yh = ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.69053e+308); yl+yh= 1.69053e+308
    
     ebd0(x=1e+307, M=3.34846e+299): M/x = (r=0.561779104644075) * 2^(e=-24); i=16,
     f=1820, fg=f*2^-(e+10)=2.98189e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=1: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=2: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=3: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     3. after ADD1(M): yl,yh = ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.62122e+308); yl+yh= 1.62122e+308
    
     ebd0(x=1e+307, M=6.69693e+299): M/x = (r=0.561779104644075) * 2^(e=-23); i=16,
     f=1820, fg=f*2^-(e+10)=1.49094e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=1: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=2: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=3: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     3. after ADD1(M): yl,yh = ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.5519e+308); yl+yh= 1.5519e+308
    
     ebd0(x=1e+307, M=1.33939e+300): M/x = (r=0.561779104644075) * 2^(e=-22); i=16,
     f=1820, fg=f*2^-(e+10)=7.45472e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=1: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=2: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=3: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     3. after ADD1(M): yl,yh = ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.48259e+308); yl+yh= 1.48259e+308
    
     ebd0(x=1e+307, M=2.67877e+300): M/x = (r=0.561779104644075) * 2^(e=-21); i=16,
     f=1820, fg=f*2^-(e+10)=3.72736e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=1: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=2: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=3: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     3. after ADD1(M): yl,yh = ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.41327e+308); yl+yh= 1.41327e+308
    
     ebd0(x=1e+307, M=5.35754e+300): M/x = (r=0.561779104644075) * 2^(e=-20); i=16,
     f=1820, fg=f*2^-(e+10)=1.86368e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=1: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=2: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=3: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     3. after ADD1(M): yl,yh = ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.34396e+308); yl+yh= 1.34396e+308
    
     ebd0(x=1e+307, M=1.07151e+301): M/x = (r=0.561779104644075) * 2^(e=-19); i=16,
     f=1820, fg=f*2^-(e+10)=931840
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=1: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=2: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=3: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     3. after ADD1(M): yl,yh = ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.27464e+308); yl+yh= 1.27464e+308
    
     ebd0(x=1e+307, M=2.14302e+301): M/x = (r=0.561779104644075) * 2^(e=-18); i=16,
     f=1820, fg=f*2^-(e+10)=465920
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=1: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=2: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=3: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     3. after ADD1(M): yl,yh = ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.20533e+308); yl+yh= 1.20533e+308
    
     ebd0(x=1e+307, M=4.28603e+301): M/x = (r=0.561779104644075) * 2^(e=-17); i=16,
     f=1820, fg=f*2^-(e+10)=232960
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=1: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=2: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=3: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     3. after ADD1(M): yl,yh = ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.13602e+308); yl+yh= 1.13602e+308
    
     ebd0(x=1e+307, M=8.57207e+301): M/x = (r=0.561779104644075) * 2^(e=-16); i=16,
     f=1820, fg=f*2^-(e+10)=116480
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=1: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=2: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=3: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     3. after ADD1(M): yl,yh = ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.0667e+308); yl+yh= 1.0667e+308
    
     ebd0(x=1e+307, M=1.71441e+302): M/x = (r=0.561779104644075) * 2^(e=-15); i=16,
     f=1820, fg=f*2^-(e+10)=58240
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=1: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=2: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=3: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     3. after ADD1(M): yl,yh = ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.97387e+307); yl+yh= 9.97387e+307
    
     ebd0(x=1e+307, M=3.42883e+302): M/x = (r=0.561779104644075) * 2^(e=-14); i=16,
     f=1820, fg=f*2^-(e+10)=29120
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=1: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=2: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=3: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     3. after ADD1(M): yl,yh = ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.28074e+307); yl+yh= 9.28074e+307
    
     ebd0(x=1e+307, M=6.85766e+302): M/x = (r=0.561779104644075) * 2^(e=-13); i=16,
     f=1820, fg=f*2^-(e+10)=14560
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=1: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=2: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=3: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     3. after ADD1(M): yl,yh = ( 0, 9.5861e+307); yl+yh= 9.5861e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 8.58763e+307); yl+yh= 8.58763e+307
    
     ebd0(x=1e+307, M=1.37153e+303): M/x = (r=0.561779104644075) * 2^(e=-12); i=16,
     f=1820, fg=f*2^-(e+10)=7280
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=1: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=2: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=3: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     3. after ADD1(M): yl,yh = ( 0, 8.89302e+307); yl+yh= 8.89302e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.89455e+307); yl+yh= 7.89455e+307
    
     ebd0(x=1e+307, M=2.74306e+303): M/x = (r=0.561779104644075) * 2^(e=-11); i=16,
     f=1820, fg=f*2^-(e+10)=3640
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=1: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=2: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=3: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     3. after ADD1(M): yl,yh = ( 0, 8.20001e+307); yl+yh= 8.20001e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.20154e+307); yl+yh= 7.20154e+307
    
     ebd0(x=1e+307, M=5.48612e+303): M/x = (r=0.561779104644075) * 2^(e=-10); i=16,
     f=1820, fg=f*2^-(e+10)=1820
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=1: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=2: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=3: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     3. after ADD1(M): yl,yh = ( 0, 7.50714e+307); yl+yh= 7.50714e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 6.50867e+307); yl+yh= 6.50867e+307
    
     ebd0(x=1e+307, M=1.09722e+304): M/x = (r=0.561779104644075) * 2^(e=-9); i=16,
     f=1820, fg=f*2^-(e+10)=910
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=1: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=2: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=3: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     3. after ADD1(M): yl,yh = ( 0, 6.81454e+307); yl+yh= 6.81454e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.81607e+307); yl+yh= 5.81607e+307
    
     ebd0(x=1e+307, M=2.19445e+304): M/x = (r=0.561779104644075) * 2^(e=-8); i=16,
     f=1820, fg=f*2^-(e+10)=455
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=1: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=2: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=3: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     3. after ADD1(M): yl,yh = ( 0, 6.12249e+307); yl+yh= 6.12249e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.12402e+307); yl+yh= 5.12402e+307
    
     ebd0(x=1e+307, M=4.3889e+304): M/x = (r=0.561779104644075) * 2^(e=-7); i=16,
     f=1820, fg=f*2^-(e+10)=227.5
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=1: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=2: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=3: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     3. after ADD1(M): yl,yh = ( 0, 5.43154e+307); yl+yh= 5.43154e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.43307e+307); yl+yh= 4.43307e+307
    
     ebd0(x=1e+307, M=8.7778e+304): M/x = (r=0.561779104644075) * 2^(e=-6); i=16,
     f=1820, fg=f*2^-(e+10)=113.75
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=1: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=2: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=3: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     3. after ADD1(M): yl,yh = ( 0, 4.74278e+307); yl+yh= 4.74278e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.74431e+307); yl+yh= 3.74431e+307
    
     ebd0(x=1e+307, M=1.75556e+305): M/x = (r=0.561779104644075) * 2^(e=-5); i=16,
     f=1820, fg=f*2^-(e+10)=56.875
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=1: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=2: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=3: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     3. after ADD1(M): yl,yh = ( 0, 4.05841e+307); yl+yh= 4.05841e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.05994e+307); yl+yh= 3.05994e+307
    
     ebd0(x=1e+307, M=3.51112e+305): M/x = (r=0.561779104644075) * 2^(e=-4); i=16,
     f=1820, fg=f*2^-(e+10)=28.4375
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=1: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=2: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=3: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     3. after ADD1(M): yl,yh = ( 0, 3.38282e+307); yl+yh= 3.38282e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 2.38435e+307); yl+yh= 2.38435e+307
    
     ebd0(x=1e+307, M=7.02224e+305): M/x = (r=0.561779104644075) * 2^(e=-3); i=16,
     f=1820, fg=f*2^-(e+10)=14.2188
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=1: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=2: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=3: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     3. after ADD1(M): yl,yh = ( 0, 2.72479e+307); yl+yh= 2.72479e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.72631e+307); yl+yh= 1.72631e+307
    
     ebd0(x=1e+307, M=1.40445e+306): M/x = (r=0.561779104644075) * 2^(e=-2); i=16,
     f=1820, fg=f*2^-(e+10)=7.10938
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=1: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=2: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=3: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     3. after ADD1(M): yl,yh = ( 0, 2.10186e+307); yl+yh= 2.10186e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.10339e+307); yl+yh= 1.10339e+307
    
     ebd0(x=1e+307, M=2.8089e+306): M/x = (r=0.561779104644075) * 2^(e=-1); i=16,
     f=1820, fg=f*2^-(e+10)=3.55469
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=1: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=2: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=3: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     3. after ADD1(M): yl,yh = ( 0, 1.54916e+307); yl+yh= 1.54916e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.50683e+306); yl+yh= 5.50683e+306
    
     ebd0(x=1e+307, M=5.61779e+306): M/x = (r=0.561779104644075) * 2^(e=0); i=16,
     f=1820, fg=f*2^-(e+10)=1.77734
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=1: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=2: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=3: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     3. after ADD1(M): yl,yh = ( 0, 1.1369e+307); yl+yh= 1.1369e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.38426e+306); yl+yh= 1.38426e+306
    
     ebd0(x=1e+307, M=1.12356e+307): M/x = (r=0.561779104644075) * 2^(e=1); i=16,
     f=1820, fg=f*2^-(e+10)=0.888672
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=1: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=2: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=3: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     3. after ADD1(M): yl,yh = ( 0, 1.00553e+307); yl+yh= 1.00553e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.05759e+304); yl+yh= 7.05759e+304
    
     ebd0(x=1e+307, M=2.24712e+307): M/x = (r=0.561779104644075) * 2^(e=2); i=16,
     f=1820, fg=f*2^-(e+10)=0.444336
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=1: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=2: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=3: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     3. after ADD1(M): yl,yh = ( 0, 1.43594e+307); yl+yh= 1.43594e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.37469e+306); yl+yh= 4.37469e+306
    
     ebd0(x=1e+307, M=4.49423e+307): M/x = (r=0.561779104644075) * 2^(e=3); i=16,
     f=1820, fg=f*2^-(e+10)=0.222168
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=1: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=2: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=3: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     3. after ADD1(M): yl,yh = ( 0, 2.98991e+307); yl+yh= 2.98991e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.99144e+307); yl+yh= 1.99144e+307
    
     ebd0(x=1e+307, M=8.98847e+307): M/x = (r=0.561779104644075) * 2^(e=4); i=16,
     f=1820, fg=f*2^-(e+10)=0.111084
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=1: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=2: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=3: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     3. after ADD1(M): yl,yh = ( 0, 6.791e+307); yl+yh= 6.791e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.79252e+307); yl+yh= 5.79252e+307
    
     ebd0(x=1e+307, M=1.79769e+308): M/x = (r=0.561779104644075) * 2^(e=5); i=16,
     f=1820, fg=f*2^-(e+10)=0.055542
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=1: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=2: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=3: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     3. after ADD1(M): yl,yh = ( 0, 1.50863e+308); yl+yh= 1.50863e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.40878e+308); yl+yh= 1.40878e+308
    
     bd0(1e+307, 1.12356e+307): T.series w/ 32 terms -> bd0=7.05759e+304
     > bd0v.10 <- bd0ver(x., Llam, mpfrPrec = 1024)
     ebd0(x=1e+307, M=1.0464e+298): M/x = (r=0.561779104644075) * 2^(e=-29); i=16,
     f=1820, fg=f*2^-(e+10)=9.54204e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=2.09279e+298): M/x = (r=0.561779104644075) * 2^(e=-28); i=16,
     f=1820, fg=f*2^-(e+10)=4.77102e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=4.18558e+298): M/x = (r=0.561779104644075) * 2^(e=-27); i=16,
     f=1820, fg=f*2^-(e+10)=2.38551e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=8.37116e+298): M/x = (r=0.561779104644075) * 2^(e=-26); i=16,
     f=1820, fg=f*2^-(e+10)=1.19276e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=1.67423e+299): M/x = (r=0.561779104644075) * 2^(e=-25); i=16,
     f=1820, fg=f*2^-(e+10)=5.96378e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=2: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=3: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=4: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     3. after ADD1(M): yl,yh = ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.69053e+308); yl+yh= 1.69053e+308
    
     ebd0(x=1e+307, M=3.34846e+299): M/x = (r=0.561779104644075) * 2^(e=-24); i=16,
     f=1820, fg=f*2^-(e+10)=2.98189e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=2: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=3: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=4: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     3. after ADD1(M): yl,yh = ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.62122e+308); yl+yh= 1.62122e+308
    
     ebd0(x=1e+307, M=6.69693e+299): M/x = (r=0.561779104644075) * 2^(e=-23); i=16,
     f=1820, fg=f*2^-(e+10)=1.49094e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=2: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=3: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=4: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     3. after ADD1(M): yl,yh = ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.5519e+308); yl+yh= 1.5519e+308
    
     ebd0(x=1e+307, M=1.33939e+300): M/x = (r=0.561779104644075) * 2^(e=-22); i=16,
     f=1820, fg=f*2^-(e+10)=7.45472e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=2: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=3: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=4: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     3. after ADD1(M): yl,yh = ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.48259e+308); yl+yh= 1.48259e+308
    
     ebd0(x=1e+307, M=2.67877e+300): M/x = (r=0.561779104644075) * 2^(e=-21); i=16,
     f=1820, fg=f*2^-(e+10)=3.72736e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=2: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=3: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=4: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     3. after ADD1(M): yl,yh = ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.41327e+308); yl+yh= 1.41327e+308
    
     ebd0(x=1e+307, M=5.35754e+300): M/x = (r=0.561779104644075) * 2^(e=-20); i=16,
     f=1820, fg=f*2^-(e+10)=1.86368e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=2: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=3: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=4: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     3. after ADD1(M): yl,yh = ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.34396e+308); yl+yh= 1.34396e+308
    
     ebd0(x=1e+307, M=1.07151e+301): M/x = (r=0.561779104644075) * 2^(e=-19); i=16,
     f=1820, fg=f*2^-(e+10)=931840
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=2: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=3: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=4: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     3. after ADD1(M): yl,yh = ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.27464e+308); yl+yh= 1.27464e+308
    
     ebd0(x=1e+307, M=2.14302e+301): M/x = (r=0.561779104644075) * 2^(e=-18); i=16,
     f=1820, fg=f*2^-(e+10)=465920
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=2: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=3: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=4: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     3. after ADD1(M): yl,yh = ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.20533e+308); yl+yh= 1.20533e+308
    
     ebd0(x=1e+307, M=4.28603e+301): M/x = (r=0.561779104644075) * 2^(e=-17); i=16,
     f=1820, fg=f*2^-(e+10)=232960
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=2: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=3: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=4: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     3. after ADD1(M): yl,yh = ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.13602e+308); yl+yh= 1.13602e+308
    
     ebd0(x=1e+307, M=8.57207e+301): M/x = (r=0.561779104644075) * 2^(e=-16); i=16,
     f=1820, fg=f*2^-(e+10)=116480
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=2: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=3: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=4: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     3. after ADD1(M): yl,yh = ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.0667e+308); yl+yh= 1.0667e+308
    
     ebd0(x=1e+307, M=1.71441e+302): M/x = (r=0.561779104644075) * 2^(e=-15); i=16,
     f=1820, fg=f*2^-(e+10)=58240
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=2: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=3: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=4: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     3. after ADD1(M): yl,yh = ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.97387e+307); yl+yh= 9.97387e+307
    
     ebd0(x=1e+307, M=3.42883e+302): M/x = (r=0.561779104644075) * 2^(e=-14); i=16,
     f=1820, fg=f*2^-(e+10)=29120
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=2: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=3: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=4: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     3. after ADD1(M): yl,yh = ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.28074e+307); yl+yh= 9.28074e+307
    
     ebd0(x=1e+307, M=6.85766e+302): M/x = (r=0.561779104644075) * 2^(e=-13); i=16,
     f=1820, fg=f*2^-(e+10)=14560
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=2: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=3: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=4: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     3. after ADD1(M): yl,yh = ( 0, 9.5861e+307); yl+yh= 9.5861e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 8.58763e+307); yl+yh= 8.58763e+307
    
     ebd0(x=1e+307, M=1.37153e+303): M/x = (r=0.561779104644075) * 2^(e=-12); i=16,
     f=1820, fg=f*2^-(e+10)=7280
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=2: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=3: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=4: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     3. after ADD1(M): yl,yh = ( 0, 8.89302e+307); yl+yh= 8.89302e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.89455e+307); yl+yh= 7.89455e+307
    
     ebd0(x=1e+307, M=2.74306e+303): M/x = (r=0.561779104644075) * 2^(e=-11); i=16,
     f=1820, fg=f*2^-(e+10)=3640
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=2: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=3: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=4: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     3. after ADD1(M): yl,yh = ( 0, 8.20001e+307); yl+yh= 8.20001e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.20154e+307); yl+yh= 7.20154e+307
    
     ebd0(x=1e+307, M=5.48612e+303): M/x = (r=0.561779104644075) * 2^(e=-10); i=16,
     f=1820, fg=f*2^-(e+10)=1820
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=2: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=3: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=4: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     3. after ADD1(M): yl,yh = ( 0, 7.50714e+307); yl+yh= 7.50714e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 6.50867e+307); yl+yh= 6.50867e+307
    
     ebd0(x=1e+307, M=1.09722e+304): M/x = (r=0.561779104644075) * 2^(e=-9); i=16,
     f=1820, fg=f*2^-(e+10)=910
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=2: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=3: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=4: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     3. after ADD1(M): yl,yh = ( 0, 6.81454e+307); yl+yh= 6.81454e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.81607e+307); yl+yh= 5.81607e+307
    
     ebd0(x=1e+307, M=2.19445e+304): M/x = (r=0.561779104644075) * 2^(e=-8); i=16,
     f=1820, fg=f*2^-(e+10)=455
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=2: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=3: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=4: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     3. after ADD1(M): yl,yh = ( 0, 6.12249e+307); yl+yh= 6.12249e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.12402e+307); yl+yh= 5.12402e+307
    
     ebd0(x=1e+307, M=4.3889e+304): M/x = (r=0.561779104644075) * 2^(e=-7); i=16,
     f=1820, fg=f*2^-(e+10)=227.5
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=2: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=3: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=4: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     3. after ADD1(M): yl,yh = ( 0, 5.43154e+307); yl+yh= 5.43154e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.43307e+307); yl+yh= 4.43307e+307
    
     ebd0(x=1e+307, M=8.7778e+304): M/x = (r=0.561779104644075) * 2^(e=-6); i=16,
     f=1820, fg=f*2^-(e+10)=113.75
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=2: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=3: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=4: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     3. after ADD1(M): yl,yh = ( 0, 4.74278e+307); yl+yh= 4.74278e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.74431e+307); yl+yh= 3.74431e+307
    
     ebd0(x=1e+307, M=1.75556e+305): M/x = (r=0.561779104644075) * 2^(e=-5); i=16,
     f=1820, fg=f*2^-(e+10)=56.875
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=2: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=3: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=4: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     3. after ADD1(M): yl,yh = ( 0, 4.05841e+307); yl+yh= 4.05841e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.05994e+307); yl+yh= 3.05994e+307
    
     ebd0(x=1e+307, M=3.51112e+305): M/x = (r=0.561779104644075) * 2^(e=-4); i=16,
     f=1820, fg=f*2^-(e+10)=28.4375
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=2: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=3: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=4: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     3. after ADD1(M): yl,yh = ( 0, 3.38282e+307); yl+yh= 3.38282e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 2.38435e+307); yl+yh= 2.38435e+307
    
     ebd0(x=1e+307, M=7.02224e+305): M/x = (r=0.561779104644075) * 2^(e=-3); i=16,
     f=1820, fg=f*2^-(e+10)=14.2188
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=2: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=3: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=4: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     3. after ADD1(M): yl,yh = ( 0, 2.72479e+307); yl+yh= 2.72479e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.72631e+307); yl+yh= 1.72631e+307
    
     ebd0(x=1e+307, M=1.40445e+306): M/x = (r=0.561779104644075) * 2^(e=-2); i=16,
     f=1820, fg=f*2^-(e+10)=7.10938
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=2: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=3: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=4: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     3. after ADD1(M): yl,yh = ( 0, 2.10186e+307); yl+yh= 2.10186e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.10339e+307); yl+yh= 1.10339e+307
    
     ebd0(x=1e+307, M=2.8089e+306): M/x = (r=0.561779104644075) * 2^(e=-1); i=16,
     f=1820, fg=f*2^-(e+10)=3.55469
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=2: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=3: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=4: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     3. after ADD1(M): yl,yh = ( 0, 1.54916e+307); yl+yh= 1.54916e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.50683e+306); yl+yh= 5.50683e+306
    
     ebd0(x=1e+307, M=5.61779e+306): M/x = (r=0.561779104644075) * 2^(e=0); i=16,
     f=1820, fg=f*2^-(e+10)=1.77734
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=2: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=3: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=4: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     3. after ADD1(M): yl,yh = ( 0, 1.1369e+307); yl+yh= 1.1369e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.38426e+306); yl+yh= 1.38426e+306
    
     ebd0(x=1e+307, M=1.12356e+307): M/x = (r=0.561779104644075) * 2^(e=1); i=16,
     f=1820, fg=f*2^-(e+10)=0.888672
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=2: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=3: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=4: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     3. after ADD1(M): yl,yh = ( 0, 1.00553e+307); yl+yh= 1.00553e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.05759e+304); yl+yh= 7.05759e+304
    
     ebd0(x=1e+307, M=2.24712e+307): M/x = (r=0.561779104644075) * 2^(e=2); i=16,
     f=1820, fg=f*2^-(e+10)=0.444336
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=2: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=3: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=4: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     3. after ADD1(M): yl,yh = ( 0, 1.43594e+307); yl+yh= 1.43594e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.37469e+306); yl+yh= 4.37469e+306
    
     ebd0(x=1e+307, M=4.49423e+307): M/x = (r=0.561779104644075) * 2^(e=3); i=16,
     f=1820, fg=f*2^-(e+10)=0.222168
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=2: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=3: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=4: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     3. after ADD1(M): yl,yh = ( 0, 2.98991e+307); yl+yh= 2.98991e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.99144e+307); yl+yh= 1.99144e+307
    
     ebd0(x=1e+307, M=8.98847e+307): M/x = (r=0.561779104644075) * 2^(e=4); i=16,
     f=1820, fg=f*2^-(e+10)=0.111084
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=2: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=3: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=4: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     3. after ADD1(M): yl,yh = ( 0, 6.791e+307); yl+yh= 6.791e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.79252e+307); yl+yh= 5.79252e+307
    
     ebd0(x=1e+307, M=1.79769e+308): M/x = (r=0.561779104644075) * 2^(e=5); i=16,
     f=1820, fg=f*2^-(e+10)=0.055542
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=2: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=3: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=4: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     3. after ADD1(M): yl,yh = ( 0, 1.50863e+308); yl+yh= 1.50863e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.40878e+308); yl+yh= 1.40878e+308
    
     dpq_ebd0(x[1:1], np[1:35], ... ):
     ebd0(x=1e+307, M=4.18558e+298): M/x = (r=0.561779104644075) * 2^(e=-27); i=16,
     f=1820, fg=f*2^-(e+10)=2.38551e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( nan, inf); yl+yh= nan
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=8.37116e+298): M/x = (r=0.561779104644075) * 2^(e=-26); i=16,
     f=1820, fg=f*2^-(e+10)=1.19276e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( nan, inf); yl+yh= nan
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=1.67423e+299): M/x = (r=0.561779104644075) * 2^(e=-25); i=16,
     f=1820, fg=f*2^-(e+10)=5.96378e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=1: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=2: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=3: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     3. after ADD1(M): yl,yh = ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.69053e+308); yl+yh= 1.69053e+308
    
     ebd0(x=1e+307, M=3.34846e+299): M/x = (r=0.561779104644075) * 2^(e=-24); i=16,
     f=1820, fg=f*2^-(e+10)=2.98189e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=1: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=2: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=3: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     3. after ADD1(M): yl,yh = ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.62122e+308); yl+yh= 1.62122e+308
    
     ebd0(x=1e+307, M=6.69693e+299): M/x = (r=0.561779104644075) * 2^(e=-23); i=16,
     f=1820, fg=f*2^-(e+10)=1.49094e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=1: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=2: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=3: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     3. after ADD1(M): yl,yh = ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.5519e+308); yl+yh= 1.5519e+308
    
     ebd0(x=1e+307, M=1.33939e+300): M/x = (r=0.561779104644075) * 2^(e=-22); i=16,
     f=1820, fg=f*2^-(e+10)=7.45472e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=1: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=2: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=3: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     3. after ADD1(M): yl,yh = ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.48259e+308); yl+yh= 1.48259e+308
    
     ebd0(x=1e+307, M=2.67877e+300): M/x = (r=0.561779104644075) * 2^(e=-21); i=16,
     f=1820, fg=f*2^-(e+10)=3.72736e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=1: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=2: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=3: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     3. after ADD1(M): yl,yh = ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.41327e+308); yl+yh= 1.41327e+308
    
     ebd0(x=1e+307, M=5.35754e+300): M/x = (r=0.561779104644075) * 2^(e=-20); i=16,
     f=1820, fg=f*2^-(e+10)=1.86368e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=1: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=2: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=3: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     3. after ADD1(M): yl,yh = ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.34396e+308); yl+yh= 1.34396e+308
    
     ebd0(x=1e+307, M=1.07151e+301): M/x = (r=0.561779104644075) * 2^(e=-19); i=16,
     f=1820, fg=f*2^-(e+10)=931840
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=1: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=2: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=3: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     3. after ADD1(M): yl,yh = ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.27464e+308); yl+yh= 1.27464e+308
    
     ebd0(x=1e+307, M=2.14302e+301): M/x = (r=0.561779104644075) * 2^(e=-18); i=16,
     f=1820, fg=f*2^-(e+10)=465920
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=1: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=2: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=3: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     3. after ADD1(M): yl,yh = ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.20533e+308); yl+yh= 1.20533e+308
    
     ebd0(x=1e+307, M=4.28603e+301): M/x = (r=0.561779104644075) * 2^(e=-17); i=16,
     f=1820, fg=f*2^-(e+10)=232960
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=1: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=2: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=3: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     3. after ADD1(M): yl,yh = ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.13602e+308); yl+yh= 1.13602e+308
    
     ebd0(x=1e+307, M=8.57207e+301): M/x = (r=0.561779104644075) * 2^(e=-16); i=16,
     f=1820, fg=f*2^-(e+10)=116480
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=1: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=2: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=3: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     3. after ADD1(M): yl,yh = ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.0667e+308); yl+yh= 1.0667e+308
    
     ebd0(x=1e+307, M=1.71441e+302): M/x = (r=0.561779104644075) * 2^(e=-15); i=16,
     f=1820, fg=f*2^-(e+10)=58240
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=1: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=2: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=3: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     3. after ADD1(M): yl,yh = ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.97387e+307); yl+yh= 9.97387e+307
    
     ebd0(x=1e+307, M=3.42883e+302): M/x = (r=0.561779104644075) * 2^(e=-14); i=16,
     f=1820, fg=f*2^-(e+10)=29120
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=1: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=2: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=3: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     3. after ADD1(M): yl,yh = ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.28074e+307); yl+yh= 9.28074e+307
    
     ebd0(x=1e+307, M=6.85766e+302): M/x = (r=0.561779104644075) * 2^(e=-13); i=16,
     f=1820, fg=f*2^-(e+10)=14560
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=1: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=2: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=3: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     3. after ADD1(M): yl,yh = ( 0, 9.5861e+307); yl+yh= 9.5861e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 8.58763e+307); yl+yh= 8.58763e+307
    
     ebd0(x=1e+307, M=1.37153e+303): M/x = (r=0.561779104644075) * 2^(e=-12); i=16,
     f=1820, fg=f*2^-(e+10)=7280
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=1: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=2: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=3: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     3. after ADD1(M): yl,yh = ( 0, 8.89302e+307); yl+yh= 8.89302e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.89455e+307); yl+yh= 7.89455e+307
    
     ebd0(x=1e+307, M=2.74306e+303): M/x = (r=0.561779104644075) * 2^(e=-11); i=16,
     f=1820, fg=f*2^-(e+10)=3640
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=1: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=2: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=3: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     3. after ADD1(M): yl,yh = ( 0, 8.20001e+307); yl+yh= 8.20001e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.20154e+307); yl+yh= 7.20154e+307
    
     ebd0(x=1e+307, M=5.48612e+303): M/x = (r=0.561779104644075) * 2^(e=-10); i=16,
     f=1820, fg=f*2^-(e+10)=1820
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=1: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=2: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=3: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     3. after ADD1(M): yl,yh = ( 0, 7.50714e+307); yl+yh= 7.50714e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 6.50867e+307); yl+yh= 6.50867e+307
    
     ebd0(x=1e+307, M=1.09722e+304): M/x = (r=0.561779104644075) * 2^(e=-9); i=16,
     f=1820, fg=f*2^-(e+10)=910
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=1: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=2: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=3: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     3. after ADD1(M): yl,yh = ( 0, 6.81454e+307); yl+yh= 6.81454e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.81607e+307); yl+yh= 5.81607e+307
    
     ebd0(x=1e+307, M=2.19445e+304): M/x = (r=0.561779104644075) * 2^(e=-8); i=16,
     f=1820, fg=f*2^-(e+10)=455
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=1: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=2: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=3: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     3. after ADD1(M): yl,yh = ( 0, 6.12249e+307); yl+yh= 6.12249e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.12402e+307); yl+yh= 5.12402e+307
    
     ebd0(x=1e+307, M=4.3889e+304): M/x = (r=0.561779104644075) * 2^(e=-7); i=16,
     f=1820, fg=f*2^-(e+10)=227.5
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=1: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=2: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=3: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     3. after ADD1(M): yl,yh = ( 0, 5.43154e+307); yl+yh= 5.43154e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.43307e+307); yl+yh= 4.43307e+307
    
     ebd0(x=1e+307, M=8.7778e+304): M/x = (r=0.561779104644075) * 2^(e=-6); i=16,
     f=1820, fg=f*2^-(e+10)=113.75
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=1: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=2: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=3: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     3. after ADD1(M): yl,yh = ( 0, 4.74278e+307); yl+yh= 4.74278e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.74431e+307); yl+yh= 3.74431e+307
    
     ebd0(x=1e+307, M=1.75556e+305): M/x = (r=0.561779104644075) * 2^(e=-5); i=16,
     f=1820, fg=f*2^-(e+10)=56.875
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=1: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=2: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=3: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     3. after ADD1(M): yl,yh = ( 0, 4.05841e+307); yl+yh= 4.05841e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.05994e+307); yl+yh= 3.05994e+307
    
     ebd0(x=1e+307, M=3.51112e+305): M/x = (r=0.561779104644075) * 2^(e=-4); i=16,
     f=1820, fg=f*2^-(e+10)=28.4375
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=1: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=2: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=3: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     3. after ADD1(M): yl,yh = ( 0, 3.38282e+307); yl+yh= 3.38282e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 2.38435e+307); yl+yh= 2.38435e+307
    
     ebd0(x=1e+307, M=7.02224e+305): M/x = (r=0.561779104644075) * 2^(e=-3); i=16,
     f=1820, fg=f*2^-(e+10)=14.2188
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=1: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=2: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=3: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     3. after ADD1(M): yl,yh = ( 0, 2.72479e+307); yl+yh= 2.72479e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.72631e+307); yl+yh= 1.72631e+307
    
     ebd0(x=1e+307, M=1.40445e+306): M/x = (r=0.561779104644075) * 2^(e=-2); i=16,
     f=1820, fg=f*2^-(e+10)=7.10938
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=1: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=2: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=3: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     3. after ADD1(M): yl,yh = ( 0, 2.10186e+307); yl+yh= 2.10186e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.10339e+307); yl+yh= 1.10339e+307
    
     ebd0(x=1e+307, M=2.8089e+306): M/x = (r=0.561779104644075) * 2^(e=-1); i=16,
     f=1820, fg=f*2^-(e+10)=3.55469
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=1: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=2: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=3: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     3. after ADD1(M): yl,yh = ( 0, 1.54916e+307); yl+yh= 1.54916e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.50683e+306); yl+yh= 5.50683e+306
    
     ebd0(x=1e+307, M=5.61779e+306): M/x = (r=0.561779104644075) * 2^(e=0); i=16,
     f=1820, fg=f*2^-(e+10)=1.77734
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=1: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=2: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=3: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     3. after ADD1(M): yl,yh = ( 0, 1.1369e+307); yl+yh= 1.1369e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.38426e+306); yl+yh= 1.38426e+306
    
     ebd0(x=1e+307, M=1.12356e+307): M/x = (r=0.561779104644075) * 2^(e=1); i=16,
     f=1820, fg=f*2^-(e+10)=0.888672
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=1: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=2: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=3: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     3. after ADD1(M): yl,yh = ( 0, 1.00553e+307); yl+yh= 1.00553e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.05759e+304); yl+yh= 7.05759e+304
    
     ebd0(x=1e+307, M=2.24712e+307): M/x = (r=0.561779104644075) * 2^(e=2); i=16,
     f=1820, fg=f*2^-(e+10)=0.444336
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=1: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=2: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=3: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     3. after ADD1(M): yl,yh = ( 0, 1.43594e+307); yl+yh= 1.43594e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.37469e+306); yl+yh= 4.37469e+306
    
     ebd0(x=1e+307, M=4.49423e+307): M/x = (r=0.561779104644075) * 2^(e=3); i=16,
     f=1820, fg=f*2^-(e+10)=0.222168
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=1: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=2: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=3: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     3. after ADD1(M): yl,yh = ( 0, 2.98991e+307); yl+yh= 2.98991e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.99144e+307); yl+yh= 1.99144e+307
    
     ebd0(x=1e+307, M=8.98847e+307): M/x = (r=0.561779104644075) * 2^(e=4); i=16,
     f=1820, fg=f*2^-(e+10)=0.111084
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=1: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=2: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=3: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     3. after ADD1(M): yl,yh = ( 0, 6.791e+307); yl+yh= 6.791e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.79252e+307); yl+yh= 5.79252e+307
    
     ebd0(x=1e+307, M=1.79769e+308): M/x = (r=0.561779104644075) * 2^(e=5); i=16,
     f=1820, fg=f*2^-(e+10)=0.055542
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=1: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=2: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=3: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     3. after ADD1(M): yl,yh = ( 0, 1.50863e+308); yl+yh= 1.50863e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.40878e+308); yl+yh= 1.40878e+308
    
     bd0(1e+307, 1.12356e+307): T.series w/ 125 terms -> bd0=7.05759e+304
     > stopifnot( all.equal(bd0v.8, bd0v.10, tol=0),
     + bd0v.8$aeq0, # even tol=0 equality !
     + bd0v.8$aeq4 )
     > ## ==> 256 bit gives the *same* (asNumeric() - double-prec accuracy) as 1024 bits !
     > rm(bd0v.10)
     > showProc.time()
     Time (user system elapsed): 1.09 0.02 1.11
     >
     > p.relE <- function(bd0v, dFac = if(max(np) >= 8e307) 1e10 else 1,
     + log = "x", type="b") {
     + stopifnot(length(x <- bd0v$x) == 1 # for now
     + , is.numeric(x), is.numeric(np <- bd0v$np), length(np) > 1
     + , is.numeric(dFac), dFac > 0, length(dFac) == 1
     + , is.matrix(relE <- bd0v$relE)
     + , (k <- ncol(relE)) >= 1
     + , sum(iOk <- local({ y <- bd0v$bd0; is.finite(y) & y != 0 })) > 1
     + )
     + ## */dFac : otherwise triggering axis() error
     + ## log - axis(), 'at' creation, _LARGE_ range: invalid {xy}axp or par; nint=5
     + ## axp[0:1]=(1e+299,1e+308), usr[0:1]=(7.28752e+298,inf); i=9, ni=1
     + pc <- 1:k
     + matplot(np[iOk]/dFac, relE[iOk,], type=type, log=log, pch=pc, col=1+pc,
     + main = "relative Errors WRT bd0(<mpfr-accurate>)",
     + xlim = range(np)/dFac, # show full range
     + xlab = paste0("np[iOk]", if(dFac != 1) sprintf("/ dFac, dFac=%g",dFac)),
     + ## could use sfsmisc::pretty10exp(1e10, drop.1=TRUE)
     + xaxt="n"); sfsmisc::eaxis(1, sub10=3)
     + mtext(sprintf("bd0(x, np), x = %g", x))
     + if(k >= 2) legend("top", colnames(relE), pch=pc, lty=1:2, col=1+pc, bty="n")
     + rug(np[!iOk]/dFac, col=2)
     + axis(1, at=x/dFac, quote(x), col=2, col.axis=2, lwd=2, line=-1)
     + }
     >
     > p.relE(bd0v.8)
     >
     > ## ==> FIXME: a whole small (extreme) range where bd0() is *better* than ebd0() !!!
     > with(bd0v.8, cbind(log2.lam = log2(np), np, relE)) ## around 2^[1018, 1021]
     log2.lam np ebd0 ebd0C bd0
     [1,] 990 1.04639512e+298 Inf Inf Inf
     [2,] 991 2.09279025e+298 Inf Inf Inf
     [3,] 992 4.18558050e+298 Inf Inf Inf
     [4,] 993 8.37116099e+298 Inf Inf Inf
     [5,] 994 1.67423220e+299 6.86757892e-17 6.86757892e-17 6.86757892e-17
     [6,] 995 3.34846440e+299 -2.35238299e-17 -2.35238299e-17 -2.35238299e-17
     [7,] 996 6.69692879e+299 4.64722904e-18 4.64722904e-18 1.33253210e-16
     [8,] 997 1.33938576e+300 3.54540244e-17 3.54540244e-17 3.54540244e-17
     [9,] 998 2.67877152e+300 6.92860492e-17 6.92860492e-17 6.92860492e-17
     [10,] 999 5.35754304e+300 -4.18896305e-17 -4.18896305e-17 1.06614915e-16
     [11,] 1000 1.07150861e+301 -8.56162226e-18 -8.56162226e-18 1.48018542e-16
     [12,] 1001 2.14301721e+301 -1.36953500e-16 -1.36953500e-16 2.86310828e-17
     [13,] 1002 4.28603443e+301 -1.05258460e-16 -1.05258460e-16 7.04293432e-17
     [14,] 1003 8.57206886e+301 -6.93018205e-17 -6.93018205e-17 1.17802186e-16
     [15,] 1004 1.71441377e+302 -2.80427243e-17 -2.80427243e-17 -2.80427243e-17
     [16,] 1005 3.42882754e+302 2.00343436e-17 2.00343436e-17 2.00343436e-17
     [17,] 1006 6.85765509e+302 -1.55120807e-16 -1.55120807e-16 7.72879792e-17
     [18,] 1007 1.37153102e+303 2.12684439e-17 2.12684439e-17 2.12684439e-17
     [19,] 1008 2.74306203e+303 9.97903931e-17 9.97903931e-17 9.97903931e-17
     [20,] 1009 5.48612407e+303 5.66528379e-17 5.66528379e-17 5.66528379e-17
     [21,] 1010 1.09722481e+304 -1.34894374e-16 -1.34894374e-16 3.66854779e-17
     [22,] 1011 2.19444963e+304 -1.07502043e-16 -1.07502043e-16 -1.07502043e-16
     [23,] 1012 4.38889926e+304 -8.55542215e-18 -8.55542215e-18 -8.55542215e-18
     [24,] 1013 8.77779851e+304 -1.23783849e-16 -1.23783849e-16 1.42732769e-16
     [25,] 1014 1.75555970e+305 -8.86259493e-17 -8.86259493e-17 7.44362002e-17
     [26,] 1015 3.51111940e+305 -1.42625857e-16 -1.42625857e-16 6.66390640e-17
     [27,] 1016 7.02223881e+305 -2.50440324e-16 -2.50440324e-16 3.85923155e-17
     [28,] 1017 1.40444776e+306 -1.78689561e-16 -1.78689561e-16 4.74145469e-17
     [29,] 1018 2.80889552e+306 5.78691591e-16 5.78691591e-16 5.78691591e-16
     [30,] 1019 5.61779105e+306 1.07238048e-15 1.07238048e-15 -7.29886761e-16
     [31,] 1020 1.12355821e+307 1.45877315e-14 1.45877315e-14 -1.87127858e-16
     [32,] 1021 2.24711642e+307 1.31354332e-16 1.31354332e-16 1.31354332e-16
     [33,] 1022 4.49423284e+307 1.93926546e-16 1.93926546e-16 -5.66261269e-17
     [34,] 1023 8.98846567e+307 5.88175211e-17 5.88175211e-17 5.88175211e-17
     [35,] 1024 1.79769313e+308 5.63728043e-17 5.63728043e-17 -3.68640546e-16
     >
     >
     > with(bd0v.8, stopifnot(exprs = {
     + yhl["yl",] == 0 # which is not really good and should maybe change !
     + ## Fixed now : both have 4 x Inf and then are equal {but do Note relE difference above!}
     + all.equal(ebd0["yh",], bd0, tol = 4 * .Machine$double.eps)
     + }))
     Error in eval(substitute(expr), data, enclos = parent.frame()) :
     ebd0["yh", ] and bd0 are not equal:
     Mean absolute difference: 1.44431286e+292
     Calls: with ... eval -> eval -> stopifnot -> eval -> eval -> stopifnot
     Execution halted
Flavor: r-oldrel-windows-ix86+x86_64

Version: 0.5-1
Check: running tests for arch ‘x64’
Result: ERROR
     Running 'chisq-nonc-ex.R' [44s]
     Running 'dnbinom-tst.R' [32s]
     Running 'dnchisq-tst.R' [1s]
     Running 'hyper-dist-ex.R' [44s]
     Running 'pnbeta-tst.R' [1s]
     Running 'pnt-prec.R' [34s]
     Running 'ppois-ex.R' [2s]
     Running 'qPoisBinom-ex.R' [1s]
     Running 'qbeta-dist.R' [15s]
     Running 'qbeta-tst.R' [1s]
     Running 'qgamma-ex.R' [22s]
     Running 'stirlerr-tst.R' [81s]
     Running 't-nonc-tst.R' [8s]
     Running 'wienergerm-pchisq-tst.R' [0s]
     Running 'wienergerm_nchisq.R' [9s]
    Running the tests in 'tests/stirlerr-tst.R' failed.
    Complete output:
     > #### Testing stirlerr(), bd0(), ebd0(), dpois_raw(), ...
     > #### ===============================================
     >
     > require(DPQ)
     Loading required package: DPQ
     > for(pkg in c("Rmpfr", "DPQmpfr"))
     + if(!requireNamespace(pkg)) {
     + cat("no CRAN package", sQuote(pkg), " ---> no tests here.\n")
     + q("no")
     + }
     Loading required namespace: Rmpfr
     Loading required namespace: DPQmpfr
     > require("Rmpfr")
     Loading required package: Rmpfr
     Loading required package: gmp
    
     Attaching package: 'gmp'
    
     The following objects are masked from 'package:base':
    
     %*%, apply, crossprod, matrix, tcrossprod
    
     C code of R package 'Rmpfr': GMP using 64 bits per limb
    
    
     Attaching package: 'Rmpfr'
    
     The following object is masked from 'package:gmp':
    
     outer
    
     The following object is masked from 'package:DPQ':
    
     log1mexp
    
     The following objects are masked from 'package:stats':
    
     dbinom, dgamma, dnbinom, dnorm, dpois, dt, pnorm
    
     The following objects are masked from 'package:base':
    
     cbind, pmax, pmin, rbind
    
     >
     > source(system.file(package="Matrix", "test-tools-1.R", mustWork=TRUE))
     Loading required package: tools
     > ## -> showProc.time(), assertError(), relErrV(), ...
     >
     > ##' From ..../sfsmisc/R/relErr.R --- version that *keeps* matrix
     > ## Componentwise aka "Vectorized" relative error:
     > ## Must not be NA/NaN unless one of the components is ==> deal with {0, Inf, NA}
     > relErrV <- function(target, current, eps0 = .Machine$double.xmin) {
     + n <- length(target <- as.vector(target))
     + ## assert( <length current> is multiple of <length target>) :
     + lc <- length(current)
     + if(!n) {
     + if(!lc) return(numeric()) # everything length 0
     + else stop("length(target) == 0 differing from length(current)")
     + } else if(!lc)
     + stop("length(current) == 0 differing from length(target)")
     + ## else n, lc > 0
     + if(lc %% n)
     + stop("length(current) must be a multiple of length(target)")
     + recycle <- (lc != n) # explicitly recycle
     + R <- if(recycle)
     + target[rep(seq_len(n), length.out=lc)]
     + else
     + target # (possibly "mpfr")
     + R[] <- 0
     + ## use *absolute* error when target is zero {and deal with NAs}:
     + t0 <- abs(target) < eps0 & !(na.t <- is.na(target))
     + R[t0] <- current[t0]
     + ## absolute error also when it is infinite, as (-Inf, Inf) would give NaN:
     + dInf <- is.infinite(E <- current - target)
     + R[dInf] <- E[dInf]
     + useRE <- !dInf & !t0 & (na.t | is.na(current) | (current != target))
     + R[useRE] <- (current/target)[useRE] - 1
     + if(recycle) { # should also work when target is mpfrArray
     + if(!is.null(d <- dim(current)))
     + array(R, dim=d, dimnames=dimnames(current))
     + else if(!is.null(nm <- names(current)) && is.null(names(R))) # not needed for mpfr
     + `names<-`(R, nm)
     + else R
     + } else R
     + }
     > showProc.time()
     Time (user system elapsed): 1.67 0.1 1.77
     >
     > cutoffs <- c(15,35,80,500) # cut points, n=*, in the above "algorithm"
     > ##
     > n <- c(seq(1,15, by=1/4),seq(16, 25, by=1/2), 26:30, seq(32,50, by=2), seq(55,1000, by=5),
     + 20*c(51:99), 50*(40:80), 150*(27:48), 500*(15:20))
     > st.n <- stirlerr(n)# rather use.halves=TRUE, just here , use.halves=FALSE)
     > plot(st.n ~ n, log="xy", type="b") ## looks good now
     > nM <- mpfr(n, 2048)
     > st.nM <- stirlerr(nM, use.halves=FALSE) ## << on purpose
     > all.equal(asNumeric(st.nM), st.n)# TRUE
     [1] TRUE
     > all.equal(st.nM, as(st.n,"mpfr"))# .. difference: 1.05884..............................e-15
     [1] "Mean relative difference: 3.76188328836862237848210671840523134669652278507109803395524851619517133525710813038949864253324335258957995946422636705795318842095018082968414294689177210904242078505467469226107840508716759595731520562809445423582080845132783078190770966884357013373423963183831420177657134945428163130092904941631651286987113921371270172713541623773629860605382909440081832156833672439163785232423191743273755440650299060121762088567869522015326743026183287161491630854095774843808440633833644546114257377272716830527815818340327554735024334315571779348383752605170522238377026508187338666733574758200859673498905046382318912316786e-14"
     > all.equal(roundMpfr(st.nM, 64), as(st.n,"mpfr"), tol=1e-16)# diff.: 1.05884...e-15
     [1] "Mean relative difference: 3.761883442465859304959816110162294641769e-14"
     >
     >
     > ## Very revealing plot showing the *relative* approximation error of stirlerr(<dblprec>)
     >
     > p.stirlerrDev <- function(n, precBits=2048, stnM = stirlerr(mpfr(n, precBits)), abs=FALSE,
     + ## cut points, n=*, in the stirlerr() algorithm :
     + cutoffs = c(15,35,80,500),
     + type = "b", cex = 1,
     + col = adjustcolor(1, 3/4), colnB = adjustcolor("orange4", 1/3),
     + log = if(abs) "xy" else "x",
     + xlim=NULL, ylim = if(abs) c(8e-18, max(abs(N(relE)))))
     + {
     + op <- par(las = 1, mgp=c(2, 0.6, 0))
     + on.exit(par(op))
     + st <- stirlerr(n, cutoffs=cutoffs)
     + relE <- sfsmisc::relErrV(stnM, st)
     + N <- asNumeric
     + form <- if(abs) abs(N(relE)) ~ n else N(relE) ~ n
     + plot(form, log=log, type=type, cex=cex, col=col, xlim=xlim, ylim=ylim,
     + ylab = quote(relErrV(stM, st)), axes=FALSE, frame=TRUE,
     + main = sprintf("stirlerr(n, cutoffs) rel.error [wrt stirlerr(Rmpfr::mpfr(n, %d))]",
     + precBits))
     + sfsmisc::eaxis(1, sub10=3)
     + sfsmisc::eaxis(2)
     + mtext(paste("cutoffs =", deparse(cutoffs)))
     + ylog <- par("ylog")
     + if(ylog) {
     + epsC <- c(1,2,4,8)*2^-52
     + epsCxp <- expression(epsilon[C],2*epsilon[C], 4*epsilon[C], 8*epsilon[C])
     + } else {
     + epsC <- (-2:2)*2^-52
     + epsCxp <- expression(-2*epsilon[C],-epsilon[C], 0, +epsilon[C], +2*epsilon[C])
     + }
     + dy <- diff(par("usr")[3:4])
     + if(diff(range(if(ylog) log10(epsC) else epsC)) > dy/50) {
     + lw <- rep(1/2, 5); lw[if(ylog) 1 else 3] <- 2
     + abline( h=epsC, lty=3, lwd=lw)
     + axis(4, at=epsC, epsCxp, las=2, cex.axis = 3/4, mgp=c(3/4, 1/4, 0), tck=0)
     + } else ## only x-axis
     + abline(h=if(ylog) epsC else 0, lty=3, lwd=2)
     + abline(v = cutoffs, col=colnB)
     + axis(3, at=cutoffs, col=colnB, col.axis=colnB,
     + labels = formatC(cutoffs, digits=3, width=1))
     + invisible(relE)
     + }
     >
     > do.pdf <- TRUE
     > do.pdf <- !dev.interactive(orNone = TRUE)
     > do.pdf
     [1] TRUE
     > if(do.pdf)
     + pdf("stirlerr-relErr_0.pdf", width=8, height=6)
     >
     > showProc.time()
     Time (user system elapsed): 3.82 0 3.86
     >
     > p.stirlerrDev(n=n, stnM=st.nM) # default cutoffs= c(15, 40, 85, 600)
     > ## show the zoom-in region in next plot
     > yl2 <- 3e-14*c(-1,1)
     > abline(h = yl2, col=adjustcolor("tomato", 1/4), lwd=3, lty=2)
     >
     > if(do.pdf) {
     + dev.off() ; pdf("stirlerr-relErr_1.pdf", width=8, height=6)
     + }
     >
     > ## drop small n
     > p.stirlerrDev(n=n, stnM=st.nM, xlim = c(5, max(n))) # default cutoffs= c(15, 40, 85, 600)
     > abline(h = yl2, col=adjustcolor("tomato", 1/4), lwd=3, lty=2)
     >
     > ## The first plot clearly shows we should do better:
     > ## Current code is switching to less terms too early, loosing up to 2 decimals precision
     > p.stirlerrDev(n=n, stnM=st.nM, ylim = yl2)
     > abline(h = yl2, col=adjustcolor("tomato", 1/4), lwd=3, lty=2)
     >
     > if(do.pdf) {
     + dev.off(); pdf("stirlerr-relErr_6-fin.pdf")
     + }
     >
     > showProc.time()
     Time (user system elapsed): 0.3 0 0.29
     >
     > ### ~19.April 2021: "This is close to *the* solution" (but ...)
     > cuts <- c(7, 12, 20, 26, 60, 200, 3300)
     > st. <- stirlerr(n=n, cutoffs = cuts, verbose=TRUE)
     stirlerr(n, cutoffs = 7,12,20,26,60,200,3300) : case I (n <= 7), using direct formula for n= num [1:25] 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 ...
     case II (n > 7 ), 7 cutoffs: ( 7, 12, 20, 26, 60, 200, 3300 ): n in cutoff intervals:
     (7,12] (12,20] (20,26] (26,60] (60,200]
     20 21 11 16 28
     (200,3.3e+03] (3.3e+03,Inf]
     236 42
     > relE <- asNumeric(sfsmisc::relErrV(st.nM, st.))
     > head(cbind(n, relE), 20)
     n relE
     [1,] 1.00 8.911677e-16
     [2,] 1.25 -1.448799e-15
     [3,] 1.50 1.594766e-15
     [4,] 1.75 4.066938e-15
     [5,] 2.00 -1.439463e-15
     [6,] 2.25 3.992641e-15
     [7,] 2.50 3.122191e-16
     [8,] 2.75 1.178175e-14
     [9,] 3.00 -6.421491e-15
     [10,] 3.25 -1.844078e-14
     [11,] 3.50 -2.035730e-15
     [12,] 3.75 -1.035142e-14
     [13,] 4.00 1.453032e-14
     [14,] 4.25 2.251539e-14
     [15,] 4.50 -3.369124e-14
     [16,] 4.75 -3.534188e-14
     [17,] 5.00 3.069955e-14
     [18,] 5.25 -5.701343e-14
     [19,] 5.50 6.708174e-15
     [20,] 5.75 4.460480e-14
     > ## nice printout :
     > print(cbind(n = format(n, drop0trailing = TRUE),
     + stirlerr= format(st.,scientific=FALSE, digits=4),
     + relErr = signif(relE, 4))
     + , quote=FALSE)
     n stirlerr relErr
     [1,] 1 0.081061467 8.912e-16
     [2,] 1.25 0.065431967 -1.449e-15
     [3,] 1.5 0.054814121 1.595e-15
     [4,] 1.75 0.047140611 4.067e-15
     [5,] 2 0.041340696 -1.439e-15
     [6,] 2.25 0.036805303 3.993e-15
     [7,] 2.5 0.033162874 3.122e-16
     [8,] 2.75 0.030174082 1.178e-14
     [9,] 3 0.027677926 -6.421e-15
     [10,] 3.25 0.025562158 -1.844e-14
     [11,] 3.5 0.023746164 -2.036e-15
     [12,] 3.75 0.022170565 -1.035e-14
     [13,] 4 0.020790672 1.453e-14
     [14,] 4.25 0.019572208 2.252e-14
     [15,] 4.5 0.018488451 -3.369e-14
     [16,] 4.75 0.017518259 -3.534e-14
     [17,] 5 0.016644691 3.07e-14
     [18,] 5.25 0.015854013 -5.701e-14
     [19,] 5.5 0.015134973 6.708e-15
     [20,] 5.75 0.014478266 4.46e-14
     [21,] 6 0.013876129 -6.719e-15
     [22,] 6.25 0.013322037 3.135e-15
     [23,] 6.5 0.012810465 -3.891e-15
     [24,] 6.75 0.012336703 -5.301e-14
     [25,] 7 0.011896710 1.774e-14
     [26,] 7.25 0.011487003 -3.257e-14
     [27,] 7.5 0.011104560 -1.906e-14
     [28,] 7.75 0.010746749 -1.141e-14
     [29,] 8 0.010411265 -6.86e-15
     [30,] 8.25 0.010096084 -4.267e-15
     [31,] 8.5 0.009799416 -2.769e-15
     [32,] 8.75 0.009519678 -1.653e-15
     [33,] 9 0.009255462 -1.131e-15
     [34,] 9.25 0.009005511 -8.71e-16
     [35,] 9.5 0.008768700 -5.137e-16
     [36,] 9.75 0.008544021 -3.593e-16
     [37,] 10 0.008330563 -2.639e-16
     [38,] 10.25 0.008127509 -1.544e-16
     [39,] 10.5 0.007934115 -2.982e-16
     [40,] 10.75 0.007749707 -9.565e-17
     [41,] 11 0.007573675 -1.415e-16
     [42,] 11.25 0.007405461 -1.027e-16
     [43,] 11.5 0.007244554 -2.771e-17
     [44,] 11.75 0.007090490 -2.427e-17
     [45,] 12 0.006942840 -1.174e-16
     [46,] 12.25 0.006801213 2.474e-16
     [47,] 12.5 0.006665247 7.289e-17
     [48,] 12.75 0.006534610 1.485e-16
     [49,] 13 0.006408994 1.166e-17
     [50,] 13.25 0.006288116 6.312e-17
     [51,] 13.5 0.006171712 -6.452e-18
     [52,] 13.75 0.006059539 1.379e-17
     [53,] 14 0.005951370 -4.032e-17
     [54,] 14.25 0.005846995 -2.056e-17
     [55,] 14.5 0.005746217 -3.829e-17
     [56,] 14.75 0.005648853 -6.556e-17
     [57,] 15 0.005554734 -5.734e-17
     [58,] 16 0.005207656 5.537e-19
     [59,] 16.5 0.005049887 -4.726e-17
     [60,] 17 0.004901396 4.783e-17
     [61,] 17.5 0.004761387 -1.976e-16
     [62,] 18 0.004629154 -3.698e-17
     [63,] 18.5 0.004504066 -7.949e-17
     [64,] 19 0.004385560 -2.207e-16
     [65,] 19.5 0.004273130 -2.281e-17
     [66,] 20 0.004166320 -2.273e-17
     [67,] 20.5 0.004064718 -8.882e-17
     [68,] 21 0.003967954 -1.583e-16
     [69,] 21.5 0.003875690 6.289e-19
     [70,] 22 0.003787618 -5.73e-18
     [71,] 22.5 0.003703460 -9.793e-17
     [72,] 23 0.003622960 -1.029e-16
     [73,] 23.5 0.003545885 -2.311e-17
     [74,] 24 0.003472021 -4.593e-17
     [75,] 24.5 0.003401172 -9.158e-18
     [76,] 25 0.003333156 2.703e-17
     [77,] 26 0.003204970 -1.109e-16
     [78,] 27 0.003086279 -7.897e-17
     [79,] 28 0.002976064 -9.417e-18
     [80,] 29 0.002873449 -2.472e-17
     [81,] 30 0.002777675 3.454e-18
     [82,] 32 0.002604082 -4.99e-18
     [83,] 34 0.002450910 -5.68e-17
     [84,] 36 0.002314755 -2.264e-18
     [85,] 38 0.002192932 -3.248e-18
     [86,] 40 0.002083290 -2.034e-16
     [87,] 42 0.001984089 -7.638e-17
     [88,] 44 0.001893907 -1.089e-16
     [89,] 46 0.001811566 2.649e-17
     [90,] 48 0.001736086 -8.297e-17
     [91,] 50 0.001666644 4.193e-17
     [92,] 55 0.001515135 -1.209e-16
     [93,] 60 0.001388876 -1.322e-16
     [94,] 65 0.001282041 -6.821e-17
     [95,] 70 0.001190468 -2.89e-17
     [96,] 75 0.001111105 -4.77e-17
     [97,] 80 0.001041661 -1.163e-16
     [98,] 85 0.000980388 -5.347e-17
     [99,] 90 0.000925922 -3.745e-17
     [100,] 95 0.000877190 -8.095e-17
     [101,] 100 0.000833331 -1.496e-17
     [102,] 105 0.000793648 -8.561e-17
     [103,] 110 0.000757574 -2.762e-17
     [104,] 115 0.000724636 6.351e-17
     [105,] 120 0.000694443 -6.279e-17
     [106,] 125 0.000666665 -4.699e-17
     [107,] 130 0.000641024 2.201e-17
     [108,] 135 0.000617283 -1.11e-17
     [109,] 140 0.000595237 -7.067e-17
     [110,] 145 0.000574712 -1.006e-16
     [111,] 150 0.000555555 -8.214e-17
     [112,] 155 0.000537634 -1.397e-16
     [113,] 160 0.000520833 -1.717e-16
     [114,] 165 0.000505050 -8.529e-17
     [115,] 170 0.000490196 -1.66e-17
     [116,] 175 0.000476190 -9.022e-17
     [117,] 180 0.000462962 2.137e-17
     [118,] 185 0.000450450 -8.115e-17
     [119,] 190 0.000438596 -1.624e-17
     [120,] 195 0.000427350 8.692e-18
     [121,] 200 0.000416666 -6.039e-17
     [122,] 205 0.000406504 5.003e-17
     [123,] 210 0.000396825 -1.129e-17
     [124,] 215 0.000387597 -4.967e-17
     [125,] 220 0.000378788 1.949e-17
     [126,] 225 0.000370370 -1.198e-16
     [127,] 230 0.000362319 5.385e-17
     [128,] 235 0.000354610 -1.021e-17
     [129,] 240 0.000347222 3.399e-17
     [130,] 245 0.000340136 -1.682e-16
     [131,] 250 0.000333333 -9.091e-19
     [132,] 255 0.000326797 -5.987e-18
     [133,] 260 0.000320513 -7.05e-17
     [134,] 265 0.000314465 -6.944e-17
     [135,] 270 0.000308642 -8.838e-17
     [136,] 275 0.000303030 -2.459e-17
     [137,] 280 0.000297619 5.586e-18
     [138,] 285 0.000292398 -1.002e-16
     [139,] 290 0.000287356 -4.698e-17
     [140,] 295 0.000282486 3.589e-18
     [141,] 300 0.000277778 -8.79e-17
     [142,] 305 0.000273224 5.592e-17
     [143,] 310 0.000268817 -9.722e-17
     [144,] 315 0.000264550 -1.114e-16
     [145,] 320 0.000260417 9.132e-17
     [146,] 325 0.000256410 -3.948e-17
     [147,] 330 0.000252525 -4.325e-17
     [148,] 335 0.000248756 -9.059e-17
     [149,] 340 0.000245098 -1.621e-16
     [150,] 345 0.000241546 1.338e-17
     [151,] 350 0.000238095 3.486e-17
     [152,] 355 0.000234742 -2.086e-17
     [153,] 360 0.000231481 -1.147e-16
     [154,] 365 0.000228310 3.977e-17
     [155,] 370 0.000225225 -4.736e-17
     [156,] 375 0.000222222 -5.641e-17
     [157,] 380 0.000219298 -9.447e-17
     [158,] 385 0.000216450 -7.211e-17
     [159,] 390 0.000213675 -6.235e-18
     [160,] 395 0.000210970 4.771e-17
     [161,] 400 0.000208333 -1.837e-16
     [162,] 405 0.000205761 -9.207e-17
     [163,] 410 0.000203252 4.984e-17
     [164,] 415 0.000200803 2.075e-17
     [165,] 420 0.000198413 -1.513e-16
     [166,] 425 0.000196078 -1.915e-16
     [167,] 430 0.000193798 -1.057e-16
     [168,] 435 0.000191571 -7.294e-17
     [169,] 440 0.000189394 -9.068e-17
     [170,] 445 0.000187266 -1.479e-17
     [171,] 450 0.000185185 -1.037e-16
     [172,] 455 0.000183150 -4.903e-17
     [173,] 460 0.000181159 -1.496e-19
     [174,] 465 0.000179211 -8.755e-17
     [175,] 470 0.000177305 -9.812e-17
     [176,] 475 0.000175439 1.823e-17
     [177,] 480 0.000173611 -1.402e-16
     [178,] 485 0.000171821 -1.02e-16
     [179,] 490 0.000170068 -1.477e-16
     [180,] 495 0.000168350 -8.904e-17
     [181,] 500 0.000166667 -1.651e-16
     [182,] 505 0.000165016 -2.034e-17
     [183,] 510 0.000163399 -2.66e-17
     [184,] 515 0.000161812 5.707e-17
     [185,] 520 0.000160256 -1.283e-16
     [186,] 525 0.000158730 -7.213e-17
     [187,] 530 0.000157233 2.542e-17
     [188,] 535 0.000155763 9.391e-17
     [189,] 540 0.000154321 -1.605e-16
     [190,] 545 0.000152905 -1.192e-16
     [191,] 550 0.000151515 -3.43e-17
     [192,] 555 0.000150150 4.472e-17
     [193,] 560 0.000148810 -2.576e-17
     [194,] 565 0.000147493 1.196e-16
     [195,] 570 0.000146199 1.552e-17
     [196,] 575 0.000144928 -2.12e-16
     [197,] 580 0.000143678 -1.148e-17
     [198,] 585 0.000142450 -1.407e-16
     [199,] 590 0.000141243 -8.399e-17
     [200,] 595 0.000140056 -5.62e-17
     [201,] 600 0.000138889 -9.309e-17
     [202,] 605 0.000137741 -1.692e-16
     [203,] 610 0.000136612 6.936e-17
     [204,] 615 0.000135501 -8.611e-17
     [205,] 620 0.000134409 3.987e-17
     [206,] 625 0.000133333 -4.148e-17
     [207,] 630 0.000132275 -1.1e-16
     [208,] 635 0.000131234 -6.594e-17
     [209,] 640 0.000130208 -2.265e-17
     [210,] 645 0.000129199 2.465e-17
     [211,] 650 0.000128205 -5.088e-17
     [212,] 655 0.000127226 -5.245e-17
     [213,] 660 0.000126263 -1.364e-16
     [214,] 665 0.000125313 -1.784e-16
     [215,] 670 0.000124378 -4.501e-17
     [216,] 675 0.000123457 -3.045e-17
     [217,] 680 0.000122549 -7.071e-17
     [218,] 685 0.000121654 -8.794e-17
     [219,] 690 0.000120773 -9.828e-17
     [220,] 695 0.000119904 -7.036e-17
     [221,] 700 0.000119048 -1.581e-17
     [222,] 705 0.000118203 -3.835e-17
     [223,] 710 0.000117371 -5.492e-17
     [224,] 715 0.000116550 -2.908e-17
     [225,] 720 0.000115741 -3.447e-17
     [226,] 725 0.000114943 5.42e-17
     [227,] 730 0.000114155 -1.388e-16
     [228,] 735 0.000113379 -1.045e-16
     [229,] 740 0.000112613 -3.46e-17
     [230,] 745 0.000111857 1.05e-17
     [231,] 750 0.000111111 -3.025e-17
     [232,] 755 0.000110375 -1.144e-16
     [233,] 760 0.000109649 -2.414e-17
     [234,] 765 0.000108932 -7.09e-17
     [235,] 770 0.000108225 -4.449e-17
     [236,] 775 0.000107527 -1.123e-16
     [237,] 780 0.000106838 -3.249e-18
     [238,] 785 0.000106157 2.321e-17
     [239,] 790 0.000105485 5.064e-17
     [240,] 795 0.000104822 -1.233e-16
     [241,] 800 0.000104167 -1.748e-16
     [242,] 805 0.000103520 -1.378e-16
     [243,] 810 0.000102881 -9.075e-17
     [244,] 815 0.000102249 -1.586e-16
     [245,] 820 0.000101626 -7.227e-17
     [246,] 825 0.000101010 -3.838e-17
     [247,] 830 0.000100402 -2.964e-17
     [248,] 835 0.000099800 -1.876e-16
     [249,] 840 0.000099206 -2.759e-17
     [250,] 845 0.000098619 -1.536e-16
     [251,] 850 0.000098039 -8.679e-17
     [252,] 855 0.000097466 -1.494e-16
     [253,] 860 0.000096899 -1.483e-16
     [254,] 865 0.000096339 2.876e-17
     [255,] 870 0.000095785 -3.176e-17
     [256,] 875 0.000095238 2.357e-17
     [257,] 880 0.000094697 -1.091e-16
     [258,] 885 0.000094162 -5.772e-17
     [259,] 890 0.000093633 -1.744e-16
     [260,] 895 0.000093110 -1.181e-16
     [261,] 900 0.000092593 -1.335e-16
     [262,] 905 0.000092081 -5.527e-17
     [263,] 910 0.000091575 -1.198e-16
     [264,] 915 0.000091075 -1.207e-16
     [265,] 920 0.000090580 -5.728e-17
     [266,] 925 0.000090090 -4.742e-19
     [267,] 930 0.000089606 -5.574e-17
     [268,] 935 0.000089127 8.545e-17
     [269,] 940 0.000088652 -1.068e-16
     [270,] 945 0.000088183 -1.4e-17
     [271,] 950 0.000087719 -4.414e-17
     [272,] 955 0.000087260 -7.53e-17
     [273,] 960 0.000086806 -1.683e-16
     [274,] 965 0.000086356 3.832e-17
     [275,] 970 0.000085911 -7.401e-17
     [276,] 975 0.000085470 -5.156e-17
     [277,] 980 0.000085034 -7.189e-17
     [278,] 985 0.000084602 -6.9e-17
     [279,] 990 0.000084175 -6.533e-17
     [280,] 995 0.000083752 -1.062e-16
     [281,] 1000 0.000083333 4.47e-17
     [282,] 1020 0.000081699 -2.043e-16
     [283,] 1040 0.000080128 3.465e-17
     [284,] 1060 0.000078616 1.744e-17
     [285,] 1080 0.000077160 2.023e-19
     [286,] 1100 0.000075758 -8.344e-17
     [287,] 1120 0.000074405 4.223e-18
     [288,] 1140 0.000073099 1.678e-17
     [289,] 1160 0.000071839 1.405e-17
     [290,] 1180 0.000070621 1.336e-17
     [291,] 1200 0.000069444 -3.825e-18
     [292,] 1220 0.000068306 -1.316e-16
     [293,] 1240 0.000067204 4.497e-17
     [294,] 1260 0.000066138 8.852e-17
     [295,] 1280 0.000065104 -4.096e-17
     [296,] 1300 0.000064103 -1.05e-16
     [297,] 1320 0.000063131 -1.565e-17
     [298,] 1340 0.000062189 8.636e-17
     [299,] 1360 0.000061275 -8.111e-17
     [300,] 1380 0.000060386 -4.864e-17
     [301,] 1400 0.000059524 -1.377e-16
     [302,] 1420 0.000058685 -4.785e-17
     [303,] 1440 0.000057870 7.827e-17
     [304,] 1460 0.000057078 -3.29e-17
     [305,] 1480 0.000056306 -2.93e-17
     [306,] 1500 0.000055556 3.087e-17
     [307,] 1520 0.000054825 1.479e-17
     [308,] 1540 0.000054113 -6.619e-17
     [309,] 1560 0.000053419 -6.097e-17
     [310,] 1580 0.000052743 -1.745e-16
     [311,] 1600 0.000052083 -1.245e-16
     [312,] 1620 0.000051440 -3.918e-17
     [313,] 1640 0.000050813 -6.98e-17
     [314,] 1660 0.000050201 -9.32e-17
     [315,] 1680 0.000049603 -6.853e-18
     [316,] 1700 0.000049020 -8.787e-17
     [317,] 1720 0.000048450 3.516e-17
     [318,] 1740 0.000047893 -4.948e-17
     [319,] 1760 0.000047348 1.593e-17
     [320,] 1780 0.000046816 -6.248e-17
     [321,] 1800 0.000046296 5.308e-17
     [322,] 1820 0.000045788 -5.345e-17
     [323,] 1840 0.000045290 -5.611e-17
     [324,] 1860 0.000044803 -1.23e-16
     [325,] 1880 0.000044326 -2.026e-17
     [326,] 1900 0.000043860 7.87e-17
     [327,] 1920 0.000043403 -5.773e-17
     [328,] 1940 0.000042955 4.493e-18
     [329,] 1960 0.000042517 -4.638e-17
     [330,] 1980 0.000042088 -4.982e-17
     [331,] 2000 0.000041667 -1.709e-17
     [332,] 2050 0.000040650 1.564e-17
     [333,] 2100 0.000039683 5.082e-17
     [334,] 2150 0.000038760 -5.206e-17
     [335,] 2200 0.000037879 3.535e-17
     [336,] 2250 0.000037037 -2.37e-17
     [337,] 2300 0.000036232 -1.453e-16
     [338,] 2350 0.000035461 -1.478e-16
     [339,] 2400 0.000034722 7.893e-17
     [340,] 2450 0.000034014 1.053e-16
     [341,] 2500 0.000033333 -1.249e-16
     [342,] 2550 0.000032680 -2.632e-17
     [343,] 2600 0.000032051 -3.594e-17
     [344,] 2650 0.000031447 -2.662e-17
     [345,] 2700 0.000030864 -1.459e-16
     [346,] 2750 0.000030303 -1.228e-16
     [347,] 2800 0.000029762 2.86e-18
     [348,] 2850 0.000029240 1.979e-17
     [349,] 2900 0.000028736 -8.976e-18
     [350,] 2950 0.000028249 -8.074e-17
     [351,] 3000 0.000027778 3.047e-17
     [352,] 3050 0.000027322 -8.783e-17
     [353,] 3100 0.000026882 -9.946e-17
     [354,] 3150 0.000026455 -5.146e-17
     [355,] 3200 0.000026042 -3.577e-17
     [356,] 3250 0.000025641 -9.052e-17
     [357,] 3300 0.000025253 -7.322e-17
     [358,] 3350 0.000024876 -1.866e-16
     [359,] 3400 0.000024510 -1.21e-17
     [360,] 3450 0.000024155 -1.608e-16
     [361,] 3500 0.000023810 9.896e-18
     [362,] 3550 0.000023474 -1.422e-16
     [363,] 3600 0.000023148 -7.342e-17
     [364,] 3650 0.000022831 -1.147e-16
     [365,] 3700 0.000022523 -1.354e-16
     [366,] 3750 0.000022222 -7.032e-17
     [367,] 3800 0.000021930 -9.196e-17
     [368,] 3850 0.000021645 -1.068e-16
     [369,] 3900 0.000021368 -1.001e-16
     [370,] 3950 0.000021097 -8.581e-18
     [371,] 4000 0.000020833 -8.034e-17
     [372,] 4050 0.000020576 -1.234e-16
     [373,] 4200 0.000019841 -1.95e-16
     [374,] 4350 0.000019157 -1.488e-16
     [375,] 4500 0.000018519 -1.747e-16
     [376,] 4650 0.000017921 -1.313e-16
     [377,] 4800 0.000017361 -7.346e-17
     [378,] 4950 0.000016835 -1.846e-16
     [379,] 5100 0.000016340 4.508e-18
     [380,] 5250 0.000015873 -1.385e-16
     [381,] 5400 0.000015432 -9.5e-17
     [382,] 5550 0.000015015 -3.488e-17
     [383,] 5700 0.000014620 -2.353e-17
     [384,] 5850 0.000014245 -3.92e-17
     [385,] 6000 0.000013889 -1.174e-16
     [386,] 6150 0.000013550 -1.588e-16
     [387,] 6300 0.000013228 -2.74e-17
     [388,] 6450 0.000012920 -2.363e-17
     [389,] 6600 0.000012626 -7.098e-17
     [390,] 6750 0.000012346 -8.038e-18
     [391,] 6900 0.000012077 -4.655e-17
     [392,] 7050 0.000011820 -6.789e-17
     [393,] 7200 0.000011574 -4.496e-17
     [394,] 7500 0.000011111 -4.884e-17
     [395,] 8000 0.000010417 -7.881e-17
     [396,] 8500 0.000009804 -9.742e-19
     [397,] 9000 0.000009259 -3.391e-18
     [398,] 9500 0.000008772 6.364e-17
     [399,] 10000 0.000008333 -3.753e-17
     >
     > if(do.pdf) {
     + dev.off(); pdf("stirlerr-relErr_6-fin-1.pdf")
     + }
     >
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts)
     >
     > if(do.pdf) { dev.off(); pdf("stirlerr-relErr_6-fin-2.pdf") }
     >
     > ## zoom in ==> {good for n >= 10}
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", ylim = 2e-15*c(-1,1),
     + cutoffs = cuts)## old default cutoffs = c(15,35, 80, 500)
     >
     > if(do.pdf) { dev.off(); pdf("stirlerr-tst_others.pdf") }
     >
     > ##-- April 20: we more terms up to S10 in stirlerr() -- more cutoffs
     > n <- sfsmisc::lseq(1/16, 5000, length=4096)
     > nM <- mpfr(n, 2048)
     > st.nM <- stirlerr(nM, use.halves=FALSE) ## << on purpose
     >
     > cuts <- c(5.4, 7.5, 8.5, 10.625, 12.125, 20, 26, 60, 200, 3300)
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts)
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts, abs=TRUE)
     > ## using exact values sferr_halves[]
     > lines((0:30)/2, abs(stirlerr((0:30)/2, cutoffs=cuts, verbose=TRUE)/DPQ:::sferr_halves - 1), type="o", col=2,lwd=2)
     stirlerr(n, cutoffs = 5.4,7.5,8.5,10.62,12.12,20,26,60,200,3300) : case I (n <= 5.4), using direct formula for n= num [1:11] 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ...
     case II (n > 5.4 ), 10 cutoffs: ( 5.4, 7.5, 8.5, 10.625, 12.125, 20, 26, 60, 200, 3300 ): n in cutoff intervals:
     (5.4,7.5] (7.5,8.5] (8.5,10.6] (10.6,12.1] (12.1,20]
     5 2 4 3 6
     (20,26] (26,60] (60,200] (200,3.3e+03] (3.3e+03,Inf]
     0 0 0 0 0
     > ## should we e.g., use interpolation spline through sfserr_halves[] for n <= 7.5
     > ## -- doing the interpolation on the log(1 - 12*x*stirlerr(x)) vs log2(x) scale -- maybe ?
     > curve(1-12*x*stirlerr(x, verbose=TRUE), 1/64, 8, log="xy", n=2048)
     stirlerr(n, scheme = "R3") : case I (n <= 15), using direct formula for n= num [1:2048] 0.0156 0.0157 0.0157 0.0158 0.0158 ...
     > ## just need "true" values for x = 2^-(6,5,4,3,2) in addition to those we already have at x = 1/2, 1.5, 2, 2.5, ..., 7.5, 8
     >
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts, ylim=c(-1,1)*4e-14)
     > p.stirlerrDev(n=n, stnM=st.nM, cex=1/4, type="o", cutoffs = cuts, ylim=c(-1,1)*1e-15)
     >
     > st. <- stirlerr(n=n, cutoffs = cuts, verbose=TRUE)
     stirlerr(n, cutoffs = 5.4,7.5,8.5,10.62,12.12,20,26,60,200,3300) : case I (n <= 5.4), using direct formula for n= num [1:1618] 0.0625 0.0627 0.0628 0.063 0.0632 ...
     case II (n > 5.4 ), 10 cutoffs: ( 5.4, 7.5, 8.5, 10.625, 12.125, 20, 26, 60, 200, 3300 ): n in cutoff intervals:
     (5.4,7.5] (7.5,8.5] (8.5,10.6] (10.6,12.1] (12.1,20]
     119 45 81 48 182
     (20,26] (26,60] (60,200] (200,3.3e+03] (3.3e+03,Inf]
     95 303 437 1017 151
     > relE <- asNumeric(sfsmisc::relErrV(st.nM, st.))
     > head(cbind(n, relE), 20)
     n relE
     [1,] 0.06250000 1.145349e-16
     [2,] 0.06267255 2.991784e-16
     [3,] 0.06284557 -8.156474e-17
     [4,] 0.06301908 1.528496e-16
     [5,] 0.06319306 9.174643e-17
     [6,] 0.06336752 -7.677091e-17
     [7,] 0.06354246 5.967122e-17
     [8,] 0.06371789 4.722483e-16
     [9,] 0.06389380 1.721318e-16
     [10,] 0.06407019 3.924397e-16
     [11,] 0.06424708 -1.777654e-16
     [12,] 0.06442445 5.391117e-16
     [13,] 0.06460231 3.499214e-16
     [14,] 0.06478066 1.961559e-16
     [15,] 0.06495951 -9.756855e-17
     [16,] 0.06513885 2.139647e-16
     [17,] 0.06531868 1.273413e-16
     [18,] 0.06549901 2.265762e-16
     [19,] 0.06567984 2.202612e-16
     [20,] 0.06586116 2.793055e-16
     > ## nice printout :
     > print(cbind(n = format(n, drop0trailing = TRUE),
     + stirlerr= format(st.,scientific=FALSE, digits=4),
     + relErr = signif(asNumeric(sfsmisc::relErrV(st.nM, st.)), 4))
     + , quote=FALSE)
     n stirlerr relErr
     [1,] 6.250000e-02 0.67018552 1.145e-16
     [2,] 6.267255e-02 0.66920260 2.992e-16
     [3,] 6.284557e-02 0.66822034 -8.156e-17
     [4,] 6.301908e-02 0.66723875 1.528e-16
     [5,] 6.319306e-02 0.66625781 9.175e-17
     [6,] 6.336752e-02 0.66527753 -7.677e-17
     [7,] 6.354246e-02 0.66429792 5.967e-17
     [8,] 6.371789e-02 0.66331897 4.722e-16
     [9,] 6.389380e-02 0.66234069 1.721e-16
     [10,] 6.407019e-02 0.66136307 3.924e-16
     [11,] 6.424708e-02 0.66038612 -1.778e-16
     [12,] 6.442445e-02 0.65940984 5.391e-16
     [13,] 6.460231e-02 0.65843422 3.499e-16
     [14,] 6.478066e-02 0.65745927 1.962e-16
     [15,] 6.495951e-02 0.65648499 -9.757e-17
     [16,] 6.513885e-02 0.65551138 2.14e-16
     [17,] 6.531868e-02 0.65453844 1.273e-16
     [18,] 6.549901e-02 0.65356617 2.266e-16
     [19,] 6.567984e-02 0.65259457 2.203e-16
     [20,] 6.586116e-02 0.65162365 2.793e-16
     [21,] 6.604299e-02 0.65065339 1.932e-16
     [22,] 6.622532e-02 0.64968382 7.097e-16
     [23,] 6.640815e-02 0.64871491 -1.901e-17
     [24,] 6.659149e-02 0.64774669 -1.838e-16
     [25,] 6.677534e-02 0.64677914 -1.391e-16
     [26,] 6.695969e-02 0.64581226 -1.213e-16
     [27,] 6.714455e-02 0.64484607 2.032e-16
     [28,] 6.732992e-02 0.64388055 -1.909e-16
     [29,] 6.751580e-02 0.64291571 -2.471e-16
     [30,] 6.770220e-02 0.64195156 5.63e-16
     [31,] 6.788911e-02 0.64098808 2.884e-16
     [32,] 6.807653e-02 0.64002528 3.839e-16
     [33,] 6.826448e-02 0.63906317 -1.54e-17
     [34,] 6.845294e-02 0.63810174 -1.624e-16
     [35,] 6.864192e-02 0.63714099 3.531e-16
     [36,] 6.883143e-02 0.63618093 -3.276e-16
     [37,] 6.902145e-02 0.63522155 3.731e-16
     [38,] 6.921201e-02 0.63426286 1.101e-17
     [39,] 6.940309e-02 0.63330486 2.713e-16
     [40,] 6.959469e-02 0.63234754 -3.426e-16
     [41,] 6.978683e-02 0.63139091 4.905e-16
     [42,] 6.997949e-02 0.63043497 4.93e-16
     [43,] 7.017269e-02 0.62947972 1.414e-16
     [44,] 7.036642e-02 0.62852516 -2.749e-16
     [45,] 7.056069e-02 0.62757129 1.261e-16
     [46,] 7.075549e-02 0.62661811 1.128e-16
     [47,] 7.095083e-02 0.62566562 2.61e-16
     [48,] 7.114671e-02 0.62471383 -4.31e-17
     [49,] 7.134313e-02 0.62376273 -1.228e-17
     [50,] 7.154009e-02 0.62281233 -2.894e-16
     [51,] 7.173759e-02 0.62186262 -1.316e-16
     [52,] 7.193564e-02 0.62091361 3.339e-16
     [53,] 7.213424e-02 0.61996529 -1.485e-16
     [54,] 7.233339e-02 0.61901767 -1.836e-16
     [55,] 7.253308e-02 0.61807075 2.161e-16
     [56,] 7.273333e-02 0.61712453 -2.776e-16
     [57,] 7.293413e-02 0.61617901 3.135e-16
     [58,] 7.313549e-02 0.61523418 2.281e-16
     [59,] 7.333740e-02 0.61429006 5.148e-16
     [60,] 7.353986e-02 0.61334664 3.787e-16
     [61,] 7.374289e-02 0.61240393 -4.606e-17
     [62,] 7.394648e-02 0.61146191 -7.132e-17
     [63,] 7.415063e-02 0.61052061 -3.845e-17
     [64,] 7.435534e-02 0.60958000 7.328e-17
     [65,] 7.456062e-02 0.60864010 -4.679e-17
     [66,] 7.476646e-02 0.60770091 2.763e-16
     [67,] 7.497288e-02 0.60676242 2.448e-16
     [68,] 7.517986e-02 0.60582464 -4.094e-16
     [69,] 7.538741e-02 0.60488757 -5.742e-17
     [70,] 7.559554e-02 0.60395121 -8.479e-18
     [71,] 7.580424e-02 0.60301555 -5.085e-17
     [72,] 7.601352e-02 0.60208061 -2.045e-16
     [73,] 7.622338e-02 0.60114638 2.466e-16
     [74,] 7.643381e-02 0.60021286 1.597e-16
     [75,] 7.664483e-02 0.59928005 2.27e-16
     [76,] 7.685643e-02 0.59834796 2.224e-16
     [77,] 7.706861e-02 0.59741658 2.234e-16
     [78,] 7.728138e-02 0.59648591 3.941e-16
     [79,] 7.749474e-02 0.59555596 -2.752e-16
     [80,] 7.770868e-02 0.59462673 2.58e-16
     [81,] 7.792322e-02 0.59369821 -3.991e-16
     [82,] 7.813835e-02 0.59277041 -4.779e-17
     [83,] 7.835407e-02 0.59184333 2.01e-16
     [84,] 7.857039e-02 0.59091696 -1.999e-16
     [85,] 7.878730e-02 0.58999132 2.545e-16
     [86,] 7.900481e-02 0.58906639 2.109e-16
     [87,] 7.922293e-02 0.58814219 2.587e-16
     [88,] 7.944165e-02 0.58721871 1.286e-16
     [89,] 7.966097e-02 0.58629595 4.991e-17
     [90,] 7.988089e-02 0.58537391 5.19e-17
     [91,] 8.010142e-02 0.58445260 1.215e-16
     [92,] 8.032257e-02 0.58353201 2.674e-16
     [93,] 8.054432e-02 0.58261215 4.596e-16
     [94,] 8.076668e-02 0.58169301 2.036e-16
     [95,] 8.098966e-02 0.58077460 -5.517e-17
     [96,] 8.121325e-02 0.57985691 3.031e-16
     [97,] 8.143747e-02 0.57893996 2.247e-16
     [98,] 8.166230e-02 0.57802373 -1.209e-16
     [99,] 8.188775e-02 0.57710823 -3.133e-16
     [100,] 8.211382e-02 0.57619346 7.085e-17
     [101,] 8.234052e-02 0.57527942 5.045e-16
     [102,] 8.256784e-02 0.57436611 4.135e-16
     [103,] 8.279579e-02 0.57345354 4.534e-16
     [104,] 8.302437e-02 0.57254169 -1.347e-16
     [105,] 8.325358e-02 0.57163058 -1.169e-16
     [106,] 8.348343e-02 0.57072021 -7.229e-17
     [107,] 8.371391e-02 0.56981057 -4.296e-17
     [108,] 8.394502e-02 0.56890166 -4.238e-17
     [109,] 8.417677e-02 0.56799349 -2.261e-16
     [110,] 8.440917e-02 0.56708606 -3.301e-16
     [111,] 8.464220e-02 0.56617936 6.372e-17
     [112,] 8.487588e-02 0.56527340 -1.561e-16
     [113,] 8.511020e-02 0.56436818 7.831e-17
     [114,] 8.534517e-02 0.56346370 1.009e-16
     [115,] 8.558079e-02 0.56255996 2.427e-16
     [116,] 8.581706e-02 0.56165696 4.317e-16
     [117,] 8.605398e-02 0.56075470 1.674e-16
     [118,] 8.629156e-02 0.55985319 2.699e-16
     [119,] 8.652979e-02 0.55895241 1.665e-16
     [120,] 8.676868e-02 0.55805238 2.129e-16
     [121,] 8.700823e-02 0.55715310 7.248e-17
     [122,] 8.724844e-02 0.55625456 -8.757e-17
     [123,] 8.748931e-02 0.55535676 3.256e-16
     [124,] 8.773085e-02 0.55445971 5.875e-17
     [125,] 8.797305e-02 0.55356341 -2.152e-16
     [126,] 8.821592e-02 0.55266785 4.052e-16
     [127,] 8.845947e-02 0.55177305 3.825e-16
     [128,] 8.870368e-02 0.55087899 2.095e-16
     [129,] 8.894858e-02 0.54998568 1.539e-16
     [130,] 8.919414e-02 0.54909312 3.122e-17
     [131,] 8.944039e-02 0.54820131 -1.472e-16
     [132,] 8.968731e-02 0.54731025 1.587e-16
     [133,] 8.993492e-02 0.54641994 2.053e-16
     [134,] 9.018321e-02 0.54553039 -2.944e-17
     [135,] 9.043218e-02 0.54464159 2.054e-16
     [136,] 9.068184e-02 0.54375355 6.99e-16
     [137,] 9.093220e-02 0.54286625 -8.244e-17
     [138,] 9.118324e-02 0.54197972 -5.854e-17
     [139,] 9.143498e-02 0.54109394 2.166e-16
     [140,] 9.168741e-02 0.54020891 4.317e-16
     [141,] 9.194053e-02 0.53932465 3.187e-16
     [142,] 9.219436e-02 0.53844114 3.107e-16
     [143,] 9.244889e-02 0.53755839 -2.692e-16
     [144,] 9.270412e-02 0.53667640 2.38e-16
     [145,] 9.296005e-02 0.53579517 5.157e-16
     [146,] 9.321670e-02 0.53491470 2.769e-16
     [147,] 9.347405e-02 0.53403499 -3.111e-16
     [148,] 9.373211e-02 0.53315604 1.749e-16
     [149,] 9.399088e-02 0.53227785 -1.574e-18
     [150,] 9.425037e-02 0.53140043 -4.084e-17
     [151,] 9.451057e-02 0.53052377 2.308e-16
     [152,] 9.477149e-02 0.52964787 5.167e-16
     [153,] 9.503313e-02 0.52877274 4.811e-16
     [154,] 9.529550e-02 0.52789838 5.953e-16
     [155,] 9.555859e-02 0.52702478 -2.364e-16
     [156,] 9.582240e-02 0.52615195 -4.626e-17
     [157,] 9.608695e-02 0.52527988 2.243e-16
     [158,] 9.635222e-02 0.52440859 4.394e-16
     [159,] 9.661823e-02 0.52353806 -1.482e-16
     [160,] 9.688497e-02 0.52266830 -6.535e-17
     [161,] 9.715245e-02 0.52179931 8.086e-17
     [162,] 9.742066e-02 0.52093109 -6.663e-17
     [163,] 9.768962e-02 0.52006365 1.22e-17
     [164,] 9.795932e-02 0.51919697 2.278e-16
     [165,] 9.822976e-02 0.51833107 1.756e-16
     [166,] 9.850095e-02 0.51746594 1.17e-16
     [167,] 9.877289e-02 0.51660158 -3.462e-16
     [168,] 9.904558e-02 0.51573800 -3.34e-19
     [169,] 9.931902e-02 0.51487519 -1.887e-16
     [170,] 9.959322e-02 0.51401316 3.785e-16
     [171,] 9.986817e-02 0.51315190 -1.978e-16
     [172,] 1.001439e-01 0.51229142 9.003e-18
     [173,] 1.004204e-01 0.51143172 3.844e-17
     [174,] 1.006976e-01 0.51057279 5.549e-16
     [175,] 1.009756e-01 0.50971465 1.87e-16
     [176,] 1.012544e-01 0.50885728 8.696e-17
     [177,] 1.015339e-01 0.50800069 -1.527e-17
     [178,] 1.018142e-01 0.50714489 2.44e-16
     [179,] 1.020953e-01 0.50628986 4.6e-16
     [180,] 1.023772e-01 0.50543562 1.701e-16
     [181,] 1.026598e-01 0.50458215 -4.438e-17
     [182,] 1.029432e-01 0.50372947 -1.238e-16
     [183,] 1.032274e-01 0.50287758 -1.12e-16
     [184,] 1.035124e-01 0.50202646 3.054e-16
     [185,] 1.037982e-01 0.50117613 3.548e-17
     [186,] 1.040848e-01 0.50032659 3.856e-16
     [187,] 1.043721e-01 0.49947783 -3.677e-16
     [188,] 1.046603e-01 0.49862986 2.09e-16
     [189,] 1.049492e-01 0.49778268 -7.104e-17
     [190,] 1.052389e-01 0.49693628 -1.113e-16
     [191,] 1.055295e-01 0.49609067 4.999e-17
     [192,] 1.058208e-01 0.49524585 5.613e-17
     [193,] 1.061130e-01 0.49440182 1.585e-16
     [194,] 1.064059e-01 0.49355858 -8.152e-17
     [195,] 1.066997e-01 0.49271612 2.72e-16
     [196,] 1.069943e-01 0.49187446 9.096e-17
     [197,] 1.072897e-01 0.49103359 5.32e-16
     [198,] 1.075859e-01 0.49019352 1.818e-16
     [199,] 1.078829e-01 0.48935423 1.09e-16
     [200,] 1.081807e-01 0.48851574 4.357e-16
     [201,] 1.084794e-01 0.48767804 -2.295e-17
     [202,] 1.087789e-01 0.48684114 -5.037e-16
     [203,] 1.090792e-01 0.48600503 5.266e-16
     [204,] 1.093803e-01 0.48516971 5.865e-17
     [205,] 1.096823e-01 0.48433520 3.658e-16
     [206,] 1.099851e-01 0.48350148 -1.289e-16
     [207,] 1.102887e-01 0.48266855 1.178e-16
     [208,] 1.105932e-01 0.48183643 -1.764e-16
     [209,] 1.108985e-01 0.48100510 4.886e-16
     [210,] 1.112047e-01 0.48017457 -2.404e-16
     [211,] 1.115117e-01 0.47934484 3.576e-16
     [212,] 1.118196e-01 0.47851591 5.779e-16
     [213,] 1.121283e-01 0.47768778 6.892e-16
     [214,] 1.124379e-01 0.47686045 -1.894e-16
     [215,] 1.127483e-01 0.47603392 7.23e-16
     [216,] 1.130595e-01 0.47520820 2.795e-16
     [217,] 1.133717e-01 0.47438328 1.907e-16
     [218,] 1.136847e-01 0.47355916 -9.933e-17
     [219,] 1.139985e-01 0.47273584 3.813e-16
     [220,] 1.143132e-01 0.47191333 6.261e-16
     [221,] 1.146288e-01 0.47109163 4.288e-16
     [222,] 1.149453e-01 0.47027072 3.66e-16
     [223,] 1.152626e-01 0.46945063 3.422e-16
     [224,] 1.155809e-01 0.46863134 2.525e-16
     [225,] 1.158999e-01 0.46781286 2.113e-16
     [226,] 1.162199e-01 0.46699518 -3.694e-16
     [227,] 1.165408e-01 0.46617832 1.036e-16
     [228,] 1.168625e-01 0.46536226 9.654e-17
     [229,] 1.171851e-01 0.46454701 6.554e-16
     [230,] 1.175087e-01 0.46373257 -2.011e-16
     [231,] 1.178331e-01 0.46291894 4.538e-16
     [232,] 1.181584e-01 0.46210612 -1.434e-16
     [233,] 1.184846e-01 0.46129412 3.875e-16
     [234,] 1.188117e-01 0.46048292 1.15e-16
     [235,] 1.191397e-01 0.45967254 1.006e-16
     [236,] 1.194686e-01 0.45886297 -1.077e-17
     [237,] 1.197985e-01 0.45805421 2.434e-16
     [238,] 1.201292e-01 0.45724626 3.035e-16
     [239,] 1.204609e-01 0.45643913 6.026e-17
     [240,] 1.207934e-01 0.45563282 4.367e-16
     [241,] 1.211269e-01 0.45482732 3.222e-16
     [242,] 1.214613e-01 0.45402263 5.206e-16
     [243,] 1.217966e-01 0.45321877 3.503e-17
     [244,] 1.221329e-01 0.45241571 5.672e-16
     [245,] 1.224701e-01 0.45161348 2.24e-16
     [246,] 1.228082e-01 0.45081206 2.418e-16
     [247,] 1.231472e-01 0.45001147 3.687e-17
     [248,] 1.234872e-01 0.44921169 3.093e-16
     [249,] 1.238281e-01 0.44841273 2.265e-16
     [250,] 1.241700e-01 0.44761458 6.154e-17
     [251,] 1.245128e-01 0.44681726 -1.538e-18
     [252,] 1.248565e-01 0.44602076 3.555e-16
     [253,] 1.252012e-01 0.44522509 -4.781e-16
     [254,] 1.255469e-01 0.44443023 2.938e-16
     [255,] 1.258935e-01 0.44363619 3.928e-16
     [256,] 1.262411e-01 0.44284298 -7.038e-17
     [257,] 1.265896e-01 0.44205059 -1.079e-16
     [258,] 1.269391e-01 0.44125903 4.669e-16
     [259,] 1.272895e-01 0.44046828 1.96e-16
     [260,] 1.276409e-01 0.43967837 -4.152e-16
     [261,] 1.279933e-01 0.43888927 -2.424e-16
     [262,] 1.283467e-01 0.43810101 -1.146e-16
     [263,] 1.287010e-01 0.43731356 7.5e-16
     [264,] 1.290563e-01 0.43652695 5.346e-16
     [265,] 1.294126e-01 0.43574116 -1.547e-16
     [266,] 1.297699e-01 0.43495620 -8.764e-17
     [267,] 1.301282e-01 0.43417207 1.528e-17
     [268,] 1.304874e-01 0.43338876 -2.525e-16
     [269,] 1.308477e-01 0.43260629 2.075e-16
     [270,] 1.312089e-01 0.43182464 4.408e-17
     [271,] 1.315712e-01 0.43104382 3.752e-16
     [272,] 1.319344e-01 0.43026383 2.2e-17
     [273,] 1.322986e-01 0.42948468 4.53e-16
     [274,] 1.326639e-01 0.42870635 -4.298e-17
     [275,] 1.330301e-01 0.42792886 1.347e-16
     [276,] 1.333974e-01 0.42715219 6.505e-17
     [277,] 1.337657e-01 0.42637636 3.361e-16
     [278,] 1.341350e-01 0.42560136 4.917e-16
     [279,] 1.345053e-01 0.42482720 5.471e-16
     [280,] 1.348766e-01 0.42405386 2e-16
     [281,] 1.352490e-01 0.42328137 -1.265e-16
     [282,] 1.356224e-01 0.42250970 2.706e-16
     [283,] 1.359968e-01 0.42173887 1.756e-16
     [284,] 1.363723e-01 0.42096888 2.674e-17
     [285,] 1.367488e-01 0.42019972 -1.129e-16
     [286,] 1.371263e-01 0.41943140 4.621e-16
     [287,] 1.375049e-01 0.41866391 -6.214e-16
     [288,] 1.378845e-01 0.41789727 4.654e-16
     [289,] 1.382651e-01 0.41713145 2.825e-16
     [290,] 1.386469e-01 0.41636648 4.879e-16
     [291,] 1.390296e-01 0.41560235 -2.867e-16
     [292,] 1.394135e-01 0.41483905 2.957e-16
     [293,] 1.397984e-01 0.41407659 1.452e-16
     [294,] 1.401843e-01 0.41331497 3.379e-16
     [295,] 1.405713e-01 0.41255419 -5.007e-17
     [296,] 1.409594e-01 0.41179425 2.081e-16
     [297,] 1.413486e-01 0.41103516 -1.087e-16
     [298,] 1.417388e-01 0.41027690 4.484e-16
     [299,] 1.421301e-01 0.40951948 -3.403e-16
     [300,] 1.425225e-01 0.40876291 1.996e-16
     [301,] 1.429160e-01 0.40800718 1.352e-16
     [302,] 1.433105e-01 0.40725229 -5.864e-17
     [303,] 1.437062e-01 0.40649824 -3.298e-16
     [304,] 1.441029e-01 0.40574504 6.348e-16
     [305,] 1.445007e-01 0.40499268 5.75e-16
     [306,] 1.448997e-01 0.40424116 -2.812e-16
     [307,] 1.452997e-01 0.40349049 8.434e-16
     [308,] 1.457009e-01 0.40274066 -5.929e-17
     [309,] 1.461031e-01 0.40199168 -6.133e-16
     [310,] 1.465065e-01 0.40124355 3.929e-16
     [311,] 1.469109e-01 0.40049626 2.636e-16
     [312,] 1.473165e-01 0.39974981 -1.915e-16
     [313,] 1.477232e-01 0.39900422 -4.928e-16
     [314,] 1.481311e-01 0.39825947 5.766e-16
     [315,] 1.485400e-01 0.39751556 1.405e-16
     [316,] 1.489501e-01 0.39677251 1.62e-16
     [317,] 1.493613e-01 0.39603030 -1.391e-16
     [318,] 1.497737e-01 0.39528894 -1.372e-16
     [319,] 1.501872e-01 0.39454843 5.974e-16
     [320,] 1.506018e-01 0.39380877 -2.536e-16
     [321,] 1.510176e-01 0.39306996 -7.015e-17
     [322,] 1.514345e-01 0.39233200 6.183e-16
     [323,] 1.518526e-01 0.39159489 2.035e-16
     [324,] 1.522718e-01 0.39085863 8.765e-17
     [325,] 1.526922e-01 0.39012322 2.5e-17
     [326,] 1.531137e-01 0.38938866 1.398e-16
     [327,] 1.535364e-01 0.38865495 3.011e-16
     [328,] 1.539603e-01 0.38792210 4.87e-16
     [329,] 1.543854e-01 0.38719010 -3.158e-16
     [330,] 1.548116e-01 0.38645895 6.121e-16
     [331,] 1.552390e-01 0.38572865 -2.694e-18
     [332,] 1.556676e-01 0.38499920 5.091e-16
     [333,] 1.560973e-01 0.38427061 4.56e-17
     [334,] 1.565283e-01 0.38354288 -5.676e-17
     [335,] 1.569604e-01 0.38281599 1.124e-17
     [336,] 1.573938e-01 0.38208996 1.746e-16
     [337,] 1.578283e-01 0.38136479 3.868e-16
     [338,] 1.582640e-01 0.38064047 -2.082e-16
     [339,] 1.587009e-01 0.37991701 1.781e-16
     [340,] 1.591391e-01 0.37919440 5.95e-16
     [341,] 1.595784e-01 0.37847265 4.031e-16
     [342,] 1.600190e-01 0.37775175 -4.678e-16
     [343,] 1.604608e-01 0.37703171 1.538e-16
     [344,] 1.609038e-01 0.37631253 8.685e-16
     [345,] 1.613480e-01 0.37559420 1.605e-16
     [346,] 1.617934e-01 0.37487674 4.966e-16
     [347,] 1.622401e-01 0.37416013 -2.161e-16
     [348,] 1.626880e-01 0.37344437 3.402e-16
     [349,] 1.631371e-01 0.37272948 3.393e-16
     [350,] 1.635875e-01 0.37201545 2.058e-16
     [351,] 1.640392e-01 0.37130227 4.784e-16
     [352,] 1.644920e-01 0.37058995 2.528e-16
     [353,] 1.649462e-01 0.36987849 4.744e-17
     [354,] 1.654015e-01 0.36916790 3.851e-16
     [355,] 1.658582e-01 0.36845816 -3.807e-17
     [356,] 1.663161e-01 0.36774928 2.6e-16
     [357,] 1.667752e-01 0.36704126 1.007e-16
     [358,] 1.672357e-01 0.36633410 9.49e-16
     [359,] 1.676974e-01 0.36562781 -5.662e-16
     [360,] 1.681603e-01 0.36492237 1.261e-17
     [361,] 1.686246e-01 0.36421780 -6.64e-16
     [362,] 1.690901e-01 0.36351409 5.684e-16
     [363,] 1.695569e-01 0.36281124 -3.627e-16
     [364,] 1.700250e-01 0.36210925 -2.376e-16
     [365,] 1.704944e-01 0.36140813 -1.826e-16
     [366,] 1.709651e-01 0.36070786 3.78e-17
     [367,] 1.714371e-01 0.36000846 -2.452e-16
     [368,] 1.719104e-01 0.35930993 3.835e-16
     [369,] 1.723850e-01 0.35861226 -2.392e-16
     [370,] 1.728610e-01 0.35791545 -1.732e-16
     [371,] 1.733382e-01 0.35721950 -1.171e-16
     [372,] 1.738167e-01 0.35652442 -9.874e-17
     [373,] 1.742966e-01 0.35583020 4.873e-16
     [374,] 1.747778e-01 0.35513685 1.489e-16
     [375,] 1.752603e-01 0.35444436 -4.92e-16
     [376,] 1.757442e-01 0.35375274 1.133e-15
     [377,] 1.762294e-01 0.35306198 -1.392e-16
     [378,] 1.767159e-01 0.35237209 4.472e-16
     [379,] 1.772038e-01 0.35168307 -2.327e-16
     [380,] 1.776930e-01 0.35099491 2.162e-16
     [381,] 1.781836e-01 0.35030761 2.969e-16
     [382,] 1.786755e-01 0.34962118 1.61e-16
     [383,] 1.791688e-01 0.34893562 -3.762e-17
     [384,] 1.796634e-01 0.34825093 -4.235e-16
     [385,] 1.801594e-01 0.34756710 -1.893e-16
     [386,] 1.806568e-01 0.34688414 -1.445e-16
     [387,] 1.811555e-01 0.34620205 8.137e-16
     [388,] 1.816557e-01 0.34552082 -2.411e-16
     [389,] 1.821572e-01 0.34484046 2.173e-16
     [390,] 1.826601e-01 0.34416097 1.103e-15
     [391,] 1.831644e-01 0.34348235 2.414e-16
     [392,] 1.836700e-01 0.34280459 6.742e-16
     [393,] 1.841771e-01 0.34212771 5.496e-16
     [394,] 1.846856e-01 0.34145169 -2.555e-16
     [395,] 1.851954e-01 0.34077654 9.632e-17
     [396,] 1.857067e-01 0.34010226 5.749e-16
     [397,] 1.862194e-01 0.33942885 4.088e-16
     [398,] 1.867335e-01 0.33875630 -1.127e-17
     [399,] 1.872491e-01 0.33808463 4.186e-16
     [400,] 1.877660e-01 0.33741383 3.921e-17
     [401,] 1.882844e-01 0.33674389 3.782e-16
     [402,] 1.888042e-01 0.33607483 -4.201e-16
     [403,] 1.893254e-01 0.33540663 3.444e-16
     [404,] 1.898481e-01 0.33473931 8.787e-16
     [405,] 1.903723e-01 0.33407285 2.634e-16
     [406,] 1.908978e-01 0.33340727 8.367e-17
     [407,] 1.914249e-01 0.33274256 4.401e-17
     [408,] 1.919533e-01 0.33207871 -1.119e-16
     [409,] 1.924833e-01 0.33141574 2.773e-16
     [410,] 1.930147e-01 0.33075364 2.09e-16
     [411,] 1.935476e-01 0.33009241 3.427e-16
     [412,] 1.940819e-01 0.32943205 2.144e-16
     [413,] 1.946177e-01 0.32877256 3.202e-16
     [414,] 1.951550e-01 0.32811395 6.527e-16
     [415,] 1.956938e-01 0.32745620 -1.398e-16
     [416,] 1.962340e-01 0.32679933 6.37e-16
     [417,] 1.967758e-01 0.32614333 8.43e-16
     [418,] 1.973191e-01 0.32548820 -1.514e-16
     [419,] 1.978638e-01 0.32483394 -1.333e-16
     [420,] 1.984101e-01 0.32418055 5.321e-16
     [421,] 1.989578e-01 0.32352804 4.253e-16
     [422,] 1.995071e-01 0.32287640 1.651e-16
     [423,] 2.000579e-01 0.32222563 -3.774e-16
     [424,] 2.006102e-01 0.32157573 -6.258e-16
     [425,] 2.011641e-01 0.32092671 1.515e-16
     [426,] 2.017194e-01 0.32027855 -1.572e-16
     [427,] 2.022763e-01 0.31963127 5.713e-17
     [428,] 2.028348e-01 0.31898487 -5.183e-17
     [429,] 2.033947e-01 0.31833933 3.126e-16
     [430,] 2.039563e-01 0.31769467 3.642e-17
     [431,] 2.045193e-01 0.31705089 1.917e-18
     [432,] 2.050840e-01 0.31640797 -9.02e-17
     [433,] 2.056502e-01 0.31576593 1.276e-15
     [434,] 2.062179e-01 0.31512476 6.919e-16
     [435,] 2.067872e-01 0.31448446 1.282e-16
     [436,] 2.073581e-01 0.31384504 6.795e-16
     [437,] 2.079306e-01 0.31320649 -2.478e-16
     [438,] 2.085047e-01 0.31256882 6.796e-16
     [439,] 2.090803e-01 0.31193202 3.889e-16
     [440,] 2.096575e-01 0.31129609 3.889e-16
     [441,] 2.102363e-01 0.31066103 1.643e-16
     [442,] 2.108167e-01 0.31002685 2.185e-16
     [443,] 2.113988e-01 0.30939354 -1.441e-16
     [444,] 2.119824e-01 0.30876111 6.382e-16
     [445,] 2.125676e-01 0.30812955 2.436e-16
     [446,] 2.131545e-01 0.30749886 -8.812e-17
     [447,] 2.137429e-01 0.30686905 3.406e-16
     [448,] 2.143330e-01 0.30624011 4.385e-16
     [449,] 2.149248e-01 0.30561205 -1.137e-17
     [450,] 2.155181e-01 0.30498485 3.195e-16
     [451,] 2.161131e-01 0.30435854 5.673e-16
     [452,] 2.167097e-01 0.30373309 1.286e-16
     [453,] 2.173080e-01 0.30310852 2.247e-16
     [454,] 2.179080e-01 0.30248483 4e-16
     [455,] 2.185096e-01 0.30186201 7.926e-17
     [456,] 2.191128e-01 0.30124006 3.789e-16
     [457,] 2.197177e-01 0.30061898 1.416e-16
     [458,] 2.203243e-01 0.29999878 7.557e-16
     [459,] 2.209326e-01 0.29937946 1.39e-16
     [460,] 2.215425e-01 0.29876100 1.53e-16
     [461,] 2.221542e-01 0.29814343 9.033e-16
     [462,] 2.227675e-01 0.29752672 1.182e-15
     [463,] 2.233825e-01 0.29691089 8.09e-16
     [464,] 2.239992e-01 0.29629593 4.997e-16
     [465,] 2.246176e-01 0.29568185 3.541e-16
     [466,] 2.252377e-01 0.29506864 6.138e-16
     [467,] 2.258596e-01 0.29445630 1.879e-16
     [468,] 2.264831e-01 0.29384484 -3.697e-16
     [469,] 2.271084e-01 0.29323425 -8.713e-17
     [470,] 2.277354e-01 0.29262454 7.135e-17
     [471,] 2.283641e-01 0.29201570 7.4e-16
     [472,] 2.289946e-01 0.29140773 5.87e-16
     [473,] 2.296268e-01 0.29080064 5.889e-16
     [474,] 2.302607e-01 0.29019442 4.84e-16
     [475,] 2.308964e-01 0.28958907 7.977e-16
     [476,] 2.315339e-01 0.28898459 2.613e-16
     [477,] 2.321731e-01 0.28838099 -1.952e-16
     [478,] 2.328140e-01 0.28777827 6.695e-16
     [479,] 2.334568e-01 0.28717641 4.475e-16
     [480,] 2.341013e-01 0.28657543 -4.445e-16
     [481,] 2.347476e-01 0.28597532 2.102e-16
     [482,] 2.353957e-01 0.28537609 4.936e-16
     [483,] 2.360456e-01 0.28477773 -1.496e-16
     [484,] 2.366972e-01 0.28418024 -4.069e-17
     [485,] 2.373507e-01 0.28358362 7.943e-16
     [486,] 2.380060e-01 0.28298788 2.412e-16
     [487,] 2.386631e-01 0.28239301 1.201e-16
     [488,] 2.393220e-01 0.28179901 2.96e-16
     [489,] 2.399827e-01 0.28120588 4.147e-16
     [490,] 2.406452e-01 0.28061363 5.42e-17
     [491,] 2.413096e-01 0.28002225 -7.078e-17
     [492,] 2.419758e-01 0.27943174 -1.084e-16
     [493,] 2.426438e-01 0.27884210 8.852e-16
     [494,] 2.433137e-01 0.27825334 -2.045e-16
     [495,] 2.439854e-01 0.27766545 3.86e-16
     [496,] 2.446590e-01 0.27707842 4.846e-16
     [497,] 2.453345e-01 0.27649227 -1.418e-16
     [498,] 2.460118e-01 0.27590700 1.066e-16
     [499,] 2.466910e-01 0.27532259 8.576e-16
     [500,] 2.473720e-01 0.27473905 5.594e-16
     [501,] 2.480550e-01 0.27415639 4.579e-16
     [502,] 2.487398e-01 0.27357459 7.856e-16
     [503,] 2.494265e-01 0.27299367 8.994e-17
     [504,] 2.501151e-01 0.27241362 -4.785e-16
     [505,] 2.508056e-01 0.27183444 1.548e-15
     [506,] 2.514980e-01 0.27125613 6.362e-16
     [507,] 2.521924e-01 0.27067869 -7.283e-17
     [508,] 2.528886e-01 0.27010212 1.435e-15
     [509,] 2.535868e-01 0.26952641 5.177e-17
     [510,] 2.542869e-01 0.26895158 -2.401e-16
     [511,] 2.549889e-01 0.26837762 7.813e-16
     [512,] 2.556929e-01 0.26780453 5.225e-16
     [513,] 2.563988e-01 0.26723231 3.938e-17
     [514,] 2.571066e-01 0.26666096 -1.036e-15
     [515,] 2.578164e-01 0.26609047 4.764e-17
     [516,] 2.585282e-01 0.26552086 -9.354e-17
     [517,] 2.592419e-01 0.26495211 2.928e-16
     [518,] 2.599577e-01 0.26438424 3.706e-16
     [519,] 2.606753e-01 0.26381723 3.577e-16
     [520,] 2.613950e-01 0.26325109 -6.661e-16
     [521,] 2.621167e-01 0.26268581 9.624e-16
     [522,] 2.628403e-01 0.26212141 -3.302e-16
     [523,] 2.635659e-01 0.26155787 2.513e-16
     [524,] 2.642936e-01 0.26099520 -1.423e-17
     [525,] 2.650232e-01 0.26043340 1.062e-15
     [526,] 2.657549e-01 0.25987246 3.939e-16
     [527,] 2.664886e-01 0.25931240 6.104e-16
     [528,] 2.672243e-01 0.25875319 3.942e-16
     [529,] 2.679621e-01 0.25819486 4.994e-16
     [530,] 2.687018e-01 0.25763739 4.463e-16
     [531,] 2.694437e-01 0.25708079 -6.053e-17
     [532,] 2.701875e-01 0.25652505 1.186e-16
     [533,] 2.709335e-01 0.25597018 -6.001e-16
     [534,] 2.716814e-01 0.25541617 7.076e-16
     [535,] 2.724315e-01 0.25486303 -1.442e-16
     [536,] 2.731836e-01 0.25431075 -2.268e-16
     [537,] 2.739378e-01 0.25375934 -3.534e-16
     [538,] 2.746941e-01 0.25320880 1.746e-16
     [539,] 2.754525e-01 0.25265911 3.166e-16
     [540,] 2.762129e-01 0.25211030 4.663e-16
     [541,] 2.769755e-01 0.25156234 1.811e-16
     [542,] 2.777402e-01 0.25101525 -4.067e-17
     [543,] 2.785069e-01 0.25046902 3.514e-16
     [544,] 2.792758e-01 0.24992366 -3.324e-16
     [545,] 2.800468e-01 0.24937915 2.696e-16
     [546,] 2.808200e-01 0.24883552 -4.75e-16
     [547,] 2.815953e-01 0.24829274 1.789e-16
     [548,] 2.823727e-01 0.24775082 6.286e-16
     [549,] 2.831523e-01 0.24720977 4.175e-16
     [550,] 2.839340e-01 0.24666958 -3.397e-16
     [551,] 2.847178e-01 0.24613025 1.774e-16
     [552,] 2.855039e-01 0.24559178 2.747e-16
     [553,] 2.862921e-01 0.24505417 7.449e-16
     [554,] 2.870825e-01 0.24451742 2.67e-16
     [555,] 2.878751e-01 0.24398153 7.5e-16
     [556,] 2.886698e-01 0.24344650 3.373e-16
     [557,] 2.894668e-01 0.24291233 -1.38e-16
     [558,] 2.902659e-01 0.24237902 -3.26e-16
     [559,] 2.910673e-01 0.24184657 -2.38e-16
     [560,] 2.918708e-01 0.24131498 8.787e-16
     [561,] 2.926766e-01 0.24078424 9.02e-17
     [562,] 2.934846e-01 0.24025437 1.296e-15
     [563,] 2.942949e-01 0.23972535 9.891e-16
     [564,] 2.951074e-01 0.23919719 3.466e-16
     [565,] 2.959221e-01 0.23866988 3.719e-16
     [566,] 2.967391e-01 0.23814344 -1.136e-16
     [567,] 2.975583e-01 0.23761785 2.108e-16
     [568,] 2.983798e-01 0.23709311 5.577e-16
     [569,] 2.992035e-01 0.23656923 -5.229e-17
     [570,] 3.000296e-01 0.23604621 -1.045e-16
     [571,] 3.008579e-01 0.23552404 9.542e-16
     [572,] 3.016885e-01 0.23500273 3.436e-17
     [573,] 3.025214e-01 0.23448227 2.588e-16
     [574,] 3.033566e-01 0.23396267 4.935e-16
     [575,] 3.041941e-01 0.23344392 -1.881e-16
     [576,] 3.050339e-01 0.23292602 -3.572e-16
     [577,] 3.058760e-01 0.23240898 8.73e-16
     [578,] 3.067205e-01 0.23189279 -2.869e-16
     [579,] 3.075673e-01 0.23137745 -5.663e-16
     [580,] 3.084164e-01 0.23086297 4.681e-17
     [581,] 3.092678e-01 0.23034933 9.569e-16
     [582,] 3.101217e-01 0.22983655 9.478e-16
     [583,] 3.109778e-01 0.22932462 1.505e-15
     [584,] 3.118364e-01 0.22881354 -1.057e-17
     [585,] 3.126973e-01 0.22830331 7.623e-17
     [586,] 3.135606e-01 0.22779393 7.99e-16
     [587,] 3.144262e-01 0.22728539 1.723e-16
     [588,] 3.152943e-01 0.22677771 2.438e-16
     [589,] 3.161648e-01 0.22627088 7.699e-16
     [590,] 3.170376e-01 0.22576490 4.23e-16
     [591,] 3.179129e-01 0.22525976 4.447e-16
     [592,] 3.187906e-01 0.22475547 5.924e-16
     [593,] 3.196707e-01 0.22425203 8.841e-16
     [594,] 3.205532e-01 0.22374944 -1.705e-16
     [595,] 3.214382e-01 0.22324769 4.861e-16
     [596,] 3.223256e-01 0.22274679 1e-16
     [597,] 3.232155e-01 0.22224673 -2.422e-16
     [598,] 3.241078e-01 0.22174752 -4.068e-16
     [599,] 3.250026e-01 0.22124915 1.245e-16
     [600,] 3.258998e-01 0.22075163 1.647e-16
     [601,] 3.267996e-01 0.22025495 3.722e-16
     [602,] 3.277018e-01 0.21975912 -2.339e-16
     [603,] 3.286065e-01 0.21926413 -1.228e-16
     [604,] 3.295137e-01 0.21876998 -4.039e-16
     [605,] 3.304234e-01 0.21827668 -9.515e-17
     [606,] 3.313356e-01 0.21778421 -6.885e-16
     [607,] 3.322504e-01 0.21729259 2.877e-16
     [608,] 3.331677e-01 0.21680181 2.895e-16
     [609,] 3.340875e-01 0.21631187 4.429e-16
     [610,] 3.350098e-01 0.21582277 8.415e-17
     [611,] 3.359347e-01 0.21533451 7.71e-16
     [612,] 3.368621e-01 0.21484709 5.687e-16
     [613,] 3.377921e-01 0.21436051 7.473e-16
     [614,] 3.387247e-01 0.21387477 1.355e-15
     [615,] 3.396598e-01 0.21338986 2.508e-16
     [616,] 3.405975e-01 0.21290579 2.716e-16
     [617,] 3.415379e-01 0.21242256 5.832e-16
     [618,] 3.424808e-01 0.21194017 -3.492e-16
     [619,] 3.434263e-01 0.21145861 -4.253e-17
     [620,] 3.443744e-01 0.21097789 6.28e-16
     [621,] 3.453251e-01 0.21049800 -4.138e-16
     [622,] 3.462785e-01 0.21001895 4.599e-16
     [623,] 3.472345e-01 0.20954073 -3.175e-16
     [624,] 3.481931e-01 0.20906335 3.514e-16
     [625,] 3.491544e-01 0.20858680 8.275e-16
     [626,] 3.501184e-01 0.20811108 9.242e-17
     [627,] 3.510849e-01 0.20763620 -1.957e-16
     [628,] 3.520542e-01 0.20716214 3.219e-16
     [629,] 3.530262e-01 0.20668892 4.149e-16
     [630,] 3.540008e-01 0.20621653 -3.827e-16
     [631,] 3.549781e-01 0.20574497 6.978e-16
     [632,] 3.559581e-01 0.20527424 3.855e-17
     [633,] 3.569408e-01 0.20480434 -3.221e-16
     [634,] 3.579263e-01 0.20433527 -6.195e-16
     [635,] 3.589144e-01 0.20386702 1.453e-16
     [636,] 3.599053e-01 0.20339961 -9.224e-17
     [637,] 3.608989e-01 0.20293302 1.127e-15
     [638,] 3.618953e-01 0.20246726 3.578e-16
     [639,] 3.628944e-01 0.20200232 1.688e-15
     [640,] 3.638962e-01 0.20153821 1.748e-16
     [641,] 3.649009e-01 0.20107493 1.237e-15
     [642,] 3.659083e-01 0.20061247 5.74e-16
     [643,] 3.669185e-01 0.20015083 1.306e-15
     [644,] 3.679315e-01 0.19969002 8.148e-17
     [645,] 3.689472e-01 0.19923003 3.599e-16
     [646,] 3.699658e-01 0.19877087 4.61e-16
     [647,] 3.709872e-01 0.19831252 1.028e-15
     [648,] 3.720114e-01 0.19785500 2.223e-16
     [649,] 3.730384e-01 0.19739830 7.637e-16
     [650,] 3.740683e-01 0.19694242 1.09e-15
     [651,] 3.751010e-01 0.19648736 2.742e-16
     [652,] 3.761366e-01 0.19603312 1.643e-16
     [653,] 3.771750e-01 0.19557970 6.804e-16
     [654,] 3.782163e-01 0.19512709 2.871e-16
     [655,] 3.792605e-01 0.19467531 4.441e-16
     [656,] 3.803076e-01 0.19422434 7.984e-16
     [657,] 3.813575e-01 0.19377419 -4.326e-16
     [658,] 3.824103e-01 0.19332485 6.109e-16
     [659,] 3.834661e-01 0.19287633 -2.758e-16
     [660,] 3.845247e-01 0.19242862 2.016e-16
     [661,] 3.855863e-01 0.19198173 1.544e-15
     [662,] 3.866508e-01 0.19153566 2.691e-16
     [663,] 3.877183e-01 0.19109039 2.384e-16
     [664,] 3.887887e-01 0.19064594 1.906e-16
     [665,] 3.898621e-01 0.19020230 3.664e-16
     [666,] 3.909384e-01 0.18975947 -2.23e-16
     [667,] 3.920177e-01 0.18931745 1.4e-16
     [668,] 3.930999e-01 0.18887625 1.568e-17
     [669,] 3.941852e-01 0.18843585 1.038e-15
     [670,] 3.952735e-01 0.18799626 5.419e-16
     [671,] 3.963647e-01 0.18755748 -4.893e-16
     [672,] 3.974590e-01 0.18711951 8.025e-16
     [673,] 3.985563e-01 0.18668234 1.196e-15
     [674,] 3.996566e-01 0.18624598 3.877e-16
     [675,] 4.007600e-01 0.18581043 1.152e-16
     [676,] 4.018664e-01 0.18537568 2.73e-16
     [677,] 4.029758e-01 0.18494174 4.137e-16
     [678,] 4.040884e-01 0.18450860 3.267e-16
     [679,] 4.052040e-01 0.18407627 6.401e-16
     [680,] 4.063226e-01 0.18364474 4.391e-16
     [681,] 4.074444e-01 0.18321401 1.79e-16
     [682,] 4.085693e-01 0.18278408 9.319e-16
     [683,] 4.096972e-01 0.18235495 9.198e-16
     [684,] 4.108283e-01 0.18192663 8.313e-16
     [685,] 4.119625e-01 0.18149910 1.77e-15
     [686,] 4.130998e-01 0.18107237 7.254e-16
     [687,] 4.142403e-01 0.18064645 6.205e-16
     [688,] 4.153839e-01 0.18022132 -2.132e-17
     [689,] 4.165307e-01 0.17979698 3.195e-16
     [690,] 4.176807e-01 0.17937345 7.002e-16
     [691,] 4.188338e-01 0.17895070 4.086e-16
     [692,] 4.199901e-01 0.17852876 9.095e-16
     [693,] 4.211496e-01 0.17810761 1.116e-15
     [694,] 4.223123e-01 0.17768725 2.085e-16
     [695,] 4.234782e-01 0.17726769 9.39e-16
     [696,] 4.246473e-01 0.17684892 -2.568e-16
     [697,] 4.258197e-01 0.17643094 1.543e-16
     [698,] 4.269953e-01 0.17601375 -6.601e-16
     [699,] 4.281741e-01 0.17559735 9.929e-16
     [700,] 4.293562e-01 0.17518175 1.704e-16
     [701,] 4.305415e-01 0.17476693 6.051e-16
     [702,] 4.317302e-01 0.17435290 -6.362e-16
     [703,] 4.329221e-01 0.17393966 -6.512e-16
     [704,] 4.341173e-01 0.17352721 4.46e-17
     [705,] 4.353158e-01 0.17311554 1.331e-15
     [706,] 4.365176e-01 0.17270466 2.99e-16
     [707,] 4.377227e-01 0.17229456 6.016e-16
     [708,] 4.389312e-01 0.17188525 -1.596e-16
     [709,] 4.401429e-01 0.17147672 6.694e-16
     [710,] 4.413581e-01 0.17106898 1.1e-15
     [711,] 4.425766e-01 0.17066202 -2.118e-16
     [712,] 4.437984e-01 0.17025584 -3.483e-17
     [713,] 4.450236e-01 0.16985044 -5.374e-16
     [714,] 4.462523e-01 0.16944582 7.671e-16
     [715,] 4.474843e-01 0.16904198 -4.856e-16
     [716,] 4.487197e-01 0.16863892 5.618e-16
     [717,] 4.499585e-01 0.16823664 3.876e-16
     [718,] 4.512007e-01 0.16783514 8.48e-16
     [719,] 4.524464e-01 0.16743441 3.39e-16
     [720,] 4.536955e-01 0.16703446 2.166e-16
     [721,] 4.549480e-01 0.16663528 -3.914e-16
     [722,] 4.562040e-01 0.16623688 -6.427e-16
     [723,] 4.574635e-01 0.16583926 -2.234e-16
     [724,] 4.587264e-01 0.16544240 6.441e-16
     [725,] 4.599929e-01 0.16504632 -2.272e-16
     [726,] 4.612628e-01 0.16465101 5.76e-16
     [727,] 4.625363e-01 0.16425648 3.1e-17
     [728,] 4.638132e-01 0.16386271 1.346e-15
     [729,] 4.650937e-01 0.16346971 4.483e-16
     [730,] 4.663777e-01 0.16307748 7.124e-16
     [731,] 4.676653e-01 0.16268602 -1.105e-15
     [732,] 4.689564e-01 0.16229533 5.87e-16
     [733,] 4.702511e-01 0.16190540 1.285e-15
     [734,] 4.715493e-01 0.16151624 1.066e-15
     [735,] 4.728512e-01 0.16112784 7.765e-16
     [736,] 4.741566e-01 0.16074021 3.743e-16
     [737,] 4.754656e-01 0.16035334 1.656e-15
     [738,] 4.767783e-01 0.15996724 1.837e-15
     [739,] 4.780946e-01 0.15958190 4.348e-16
     [740,] 4.794145e-01 0.15919732 -5.029e-16
     [741,] 4.807380e-01 0.15881349 2.089e-16
     [742,] 4.820652e-01 0.15843043 1.486e-15
     [743,] 4.833961e-01 0.15804813 1.621e-15
     [744,] 4.847307e-01 0.15766659 -4.078e-16
     [745,] 4.860689e-01 0.15728580 4.823e-16
     [746,] 4.874108e-01 0.15690577 1.107e-15
     [747,] 4.887565e-01 0.15652650 3.2e-16
     [748,] 4.901058e-01 0.15614798 3.601e-16
     [749,] 4.914589e-01 0.15577022 -3.617e-16
     [750,] 4.928157e-01 0.15539321 6.579e-16
     [751,] 4.941762e-01 0.15501696 -1.928e-16
     [752,] 4.955405e-01 0.15464145 -6.137e-16
     [753,] 4.969086e-01 0.15426670 -2.528e-16
     [754,] 4.982805e-01 0.15389270 7.218e-16
     [755,] 4.996561e-01 0.15351944 9.735e-16
     [756,] 5.010355e-01 0.15314694 5.77e-16
     [757,] 5.024188e-01 0.15277519 1.436e-15
     [758,] 5.038058e-01 0.15240418 6.609e-16
     [759,] 5.051967e-01 0.15203392 7.387e-16
     [760,] 5.065915e-01 0.15166440 1.634e-15
     [761,] 5.079900e-01 0.15129563 6.092e-17
     [762,] 5.093925e-01 0.15092761 1.728e-15
     [763,] 5.107988e-01 0.15056032 9.504e-16
     [764,] 5.122090e-01 0.15019378 2.039e-15
     [765,] 5.136231e-01 0.14982799 9.802e-16
     [766,] 5.150411e-01 0.14946293 9.703e-16
     [767,] 5.164630e-01 0.14909861 7.196e-17
     [768,] 5.178888e-01 0.14873504 6.345e-16
     [769,] 5.193186e-01 0.14837220 -6.527e-16
     [770,] 5.207523e-01 0.14801010 1.124e-16
     [771,] 5.221900e-01 0.14764873 2.317e-16
     [772,] 5.236317e-01 0.14728811 1.119e-15
     [773,] 5.250773e-01 0.14692821 -6.687e-17
     [774,] 5.265269e-01 0.14656906 4.354e-16
     [775,] 5.279805e-01 0.14621063 1.267e-15
     [776,] 5.294382e-01 0.14585294 1.592e-15
     [777,] 5.308998e-01 0.14549598 5.543e-16
     [778,] 5.323655e-01 0.14513975 4.04e-17
     [779,] 5.338353e-01 0.14478426 -3.664e-16
     [780,] 5.353090e-01 0.14442949 1.71e-15
     [781,] 5.367869e-01 0.14407545 -6.794e-17
     [782,] 5.382689e-01 0.14372214 1.829e-16
     [783,] 5.397549e-01 0.14336955 -1.092e-16
     [784,] 5.412450e-01 0.14301770 -1.487e-15
     [785,] 5.427393e-01 0.14266656 2.16e-15
     [786,] 5.442377e-01 0.14231615 1.419e-15
     [787,] 5.457402e-01 0.14196647 -4.189e-16
     [788,] 5.472468e-01 0.14161751 2.693e-16
     [789,] 5.487577e-01 0.14126927 -4.535e-16
     [790,] 5.502727e-01 0.14092175 -4.792e-16
     [791,] 5.517918e-01 0.14057495 9.115e-16
     [792,] 5.533152e-01 0.14022887 -4.351e-16
     [793,] 5.548428e-01 0.13988351 1.319e-15
     [794,] 5.563746e-01 0.13953887 1.042e-15
     [795,] 5.579106e-01 0.13919495 5.011e-16
     [796,] 5.594509e-01 0.13885174 1.195e-15
     [797,] 5.609954e-01 0.13850924 1.153e-15
     [798,] 5.625442e-01 0.13816746 -2.329e-16
     [799,] 5.640972e-01 0.13782640 3.928e-16
     [800,] 5.656546e-01 0.13748604 4.549e-16
     [801,] 5.672162e-01 0.13714640 1.236e-15
     [802,] 5.687822e-01 0.13680747 1.234e-15
     [803,] 5.703524e-01 0.13646925 1.572e-15
     [804,] 5.719271e-01 0.13613174 1.554e-15
     [805,] 5.735060e-01 0.13579493 5.583e-16
     [806,] 5.750893e-01 0.13545884 6.815e-16
     [807,] 5.766770e-01 0.13512345 1.472e-15
     [808,] 5.782691e-01 0.13478876 4.409e-16
     [809,] 5.798656e-01 0.13445478 -1.502e-16
     [810,] 5.814664e-01 0.13412151 -4.711e-16
     [811,] 5.830717e-01 0.13378893 4.407e-16
     [812,] 5.846815e-01 0.13345706 1.319e-15
     [813,] 5.862956e-01 0.13312589 -1.725e-15
     [814,] 5.879143e-01 0.13279543 6.336e-16
     [815,] 5.895374e-01 0.13246566 9.695e-16
     [816,] 5.911649e-01 0.13213658 -6.939e-16
     [817,] 5.927970e-01 0.13180821 7.629e-16
     [818,] 5.944336e-01 0.13148054 3.622e-16
     [819,] 5.960747e-01 0.13115355 -7.108e-16
     [820,] 5.977203e-01 0.13082727 7.263e-16
     [821,] 5.993705e-01 0.13050168 3.85e-16
     [822,] 6.010252e-01 0.13017678 6.169e-16
     [823,] 6.026845e-01 0.12985257 6.993e-16
     [824,] 6.043484e-01 0.12952906 3.357e-16
     [825,] 6.060168e-01 0.12920624 8.185e-16
     [826,] 6.076899e-01 0.12888410 8.543e-16
     [827,] 6.093676e-01 0.12856266 -7.156e-16
     [828,] 6.110499e-01 0.12824190 1.602e-15
     [829,] 6.127369e-01 0.12792183 4.17e-16
     [830,] 6.144285e-01 0.12760244 6.532e-16
     [831,] 6.161248e-01 0.12728374 5.228e-17
     [832,] 6.178258e-01 0.12696573 -6.806e-16
     [833,] 6.195315e-01 0.12664840 -9.111e-16
     [834,] 6.212419e-01 0.12633175 1.16e-15
     [835,] 6.229570e-01 0.12601578 1.147e-15
     [836,] 6.246768e-01 0.12570049 9.726e-16
     [837,] 6.264014e-01 0.12538588 -8.073e-16
     [838,] 6.281308e-01 0.12507195 -2.19e-16
     [839,] 6.298649e-01 0.12475870 1.178e-15
     [840,] 6.316038e-01 0.12444613 6.227e-16
     [841,] 6.333475e-01 0.12413423 1.353e-15
     [842,] 6.350960e-01 0.12382301 2.675e-15
     [843,] 6.368494e-01 0.12351246 1.518e-15
     [844,] 6.386076e-01 0.12320258 1.941e-15
     [845,] 6.403706e-01 0.12289338 1.124e-15
     [846,] 6.421386e-01 0.12258485 1.621e-15
     [847,] 6.439114e-01 0.12227698 -8.506e-16
     [848,] 6.456890e-01 0.12196979 -5.725e-16
     [849,] 6.474716e-01 0.12166327 9.603e-16
     [850,] 6.492592e-01 0.12135741 1.704e-15
     [851,] 6.510516e-01 0.12105222 1.417e-15
     [852,] 6.528490e-01 0.12074770 -7.853e-16
     [853,] 6.546514e-01 0.12044384 2.015e-15
     [854,] 6.564587e-01 0.12014065 9.72e-16
     [855,] 6.582711e-01 0.11983812 -3.596e-16
     [856,] 6.600884e-01 0.11953625 3.496e-16
     [857,] 6.619108e-01 0.11923504 3.423e-16
     [858,] 6.637381e-01 0.11893449 -2.594e-16
     [859,] 6.655706e-01 0.11863460 1.61e-16
     [860,] 6.674081e-01 0.11833537 -8.031e-17
     [861,] 6.692506e-01 0.11803680 8.051e-16
     [862,] 6.710983e-01 0.11773888 2.753e-16
     [863,] 6.729510e-01 0.11744162 1.317e-15
     [864,] 6.748089e-01 0.11714502 6.385e-16
     [865,] 6.766719e-01 0.11684906 -5.157e-16
     [866,] 6.785400e-01 0.11655376 -1.343e-15
     [867,] 6.804133e-01 0.11625912 -5.979e-16
     [868,] 6.822918e-01 0.11596512 8.118e-17
     [869,] 6.841754e-01 0.11567177 -3.39e-16
     [870,] 6.860643e-01 0.11537907 -6.429e-16
     [871,] 6.879583e-01 0.11508702 5.342e-16
     [872,] 6.898576e-01 0.11479562 1.422e-15
     [873,] 6.917622e-01 0.11450486 1.12e-16
     [874,] 6.936720e-01 0.11421475 6.532e-16
     [875,] 6.955870e-01 0.11392528 1.307e-15
     [876,] 6.975074e-01 0.11363646 5.827e-16
     [877,] 6.994331e-01 0.11334827 6.975e-16
     [878,] 7.013640e-01 0.11306073 5.971e-16
     [879,] 7.033003e-01 0.11277383 4.566e-16
     [880,] 7.052420e-01 0.11248757 -1.131e-16
     [881,] 7.071890e-01 0.11220195 1.748e-15
     [882,] 7.091414e-01 0.11191696 7.273e-16
     [883,] 7.110992e-01 0.11163261 -8.449e-16
     [884,] 7.130623e-01 0.11134890 1.113e-15
     [885,] 7.150309e-01 0.11106582 7.061e-17
     [886,] 7.170050e-01 0.11078338 4.651e-16
     [887,] 7.189845e-01 0.11050157 -4.119e-17
     [888,] 7.209694e-01 0.11022039 2.455e-16
     [889,] 7.229599e-01 0.10993984 1.39e-15
     [890,] 7.249558e-01 0.10965992 1.777e-15
     [891,] 7.269572e-01 0.10938063 1.484e-15
     [892,] 7.289642e-01 0.10910196 1.851e-15
     [893,] 7.309767e-01 0.10882393 1.05e-15
     [894,] 7.329947e-01 0.10854652 4.347e-17
     [895,] 7.350184e-01 0.10826973 7.729e-16
     [896,] 7.370476e-01 0.10799357 1.093e-15
     [897,] 7.390824e-01 0.10771804 -4.926e-16
     [898,] 7.411229e-01 0.10744312 -5.177e-16
     [899,] 7.431689e-01 0.10716883 3.748e-16
     [900,] 7.452206e-01 0.10689515 2.729e-15
     [901,] 7.472780e-01 0.10662210 -2.314e-17
     [902,] 7.493411e-01 0.10634966 -1.073e-15
     [903,] 7.514099e-01 0.10607784 2.55e-15
     [904,] 7.534843e-01 0.10580664 1.136e-15
     [905,] 7.555645e-01 0.10553605 7.109e-16
     [906,] 7.576505e-01 0.10526608 -1.734e-15
     [907,] 7.597422e-01 0.10499672 1.678e-15
     [908,] 7.618396e-01 0.10472797 8.407e-16
     [909,] 7.639429e-01 0.10445983 5.174e-16
     [910,] 7.660520e-01 0.10419231 9.797e-17
     [911,] 7.681669e-01 0.10392539 1.335e-15
     [912,] 7.702876e-01 0.10365909 -1.114e-15
     [913,] 7.724142e-01 0.10339339 7.46e-16
     [914,] 7.745466e-01 0.10312829 -1.584e-17
     [915,] 7.766850e-01 0.10286381 2.267e-15
     [916,] 7.788292e-01 0.10259992 1.301e-15
     [917,] 7.809794e-01 0.10233664 3.786e-16
     [918,] 7.831355e-01 0.10207397 -5.462e-17
     [919,] 7.852976e-01 0.10181189 2.451e-15
     [920,] 7.874656e-01 0.10155042 -1.668e-15
     [921,] 7.896396e-01 0.10128954 8.239e-16
     [922,] 7.918196e-01 0.10102927 2.523e-16
     [923,] 7.940057e-01 0.10076959 -4.797e-16
     [924,] 7.961977e-01 0.10051051 2.049e-15
     [925,] 7.983958e-01 0.10025203 1.591e-16
     [926,] 8.006000e-01 0.09999414 1.809e-15
     [927,] 8.028103e-01 0.09973684 1.544e-15
     [928,] 8.050267e-01 0.09948014 -1.703e-16
     [929,] 8.072492e-01 0.09922402 1.579e-16
     [930,] 8.094778e-01 0.09896850 9.688e-16
     [931,] 8.117126e-01 0.09871357 -1.433e-16
     [932,] 8.139535e-01 0.09845923 -4.285e-16
     [933,] 8.162007e-01 0.09820548 9.372e-16
     [934,] 8.184540e-01 0.09795231 2.841e-15
     [935,] 8.207136e-01 0.09769973 -5.595e-16
     [936,] 8.229794e-01 0.09744774 1.142e-15
     [937,] 8.252515e-01 0.09719633 4.394e-16
     [938,] 8.275298e-01 0.09694550 -3.676e-17
     [939,] 8.298144e-01 0.09669525 1.424e-15
     [940,] 8.321053e-01 0.09644559 -6.164e-16
     [941,] 8.344026e-01 0.09619650 1.088e-15
     [942,] 8.367062e-01 0.09594800 1.513e-15
     [943,] 8.390161e-01 0.09570007 1.316e-15
     [944,] 8.413325e-01 0.09545272 -7.637e-16
     [945,] 8.436552e-01 0.09520595 -1.53e-16
     [946,] 8.459843e-01 0.09495975 1.93e-16
     [947,] 8.483199e-01 0.09471413 1.525e-16
     [948,] 8.506619e-01 0.09446908 3.843e-16
     [949,] 8.530104e-01 0.09422460 -1.242e-15
     [950,] 8.553654e-01 0.09398069 4.566e-16
     [951,] 8.577268e-01 0.09373735 6.964e-16
     [952,] 8.600948e-01 0.09349459 1.828e-15
     [953,] 8.624694e-01 0.09325239 2.908e-17
     [954,] 8.648504e-01 0.09301076 1.052e-16
     [955,] 8.672381e-01 0.09276969 1.151e-15
     [956,] 8.696323e-01 0.09252919 1.788e-15
     [957,] 8.720332e-01 0.09228926 -2.313e-16
     [958,] 8.744407e-01 0.09204988 1.27e-15
     [959,] 8.768548e-01 0.09181107 1.575e-15
     [960,] 8.792756e-01 0.09157283 1.276e-15
     [961,] 8.817031e-01 0.09133514 -4.516e-16
     [962,] 8.841373e-01 0.09109801 -4.459e-16
     [963,] 8.865782e-01 0.09086144 1.391e-15
     [964,] 8.890258e-01 0.09062543 8.464e-16
     [965,] 8.914802e-01 0.09038997 -1.671e-17
     [966,] 8.939414e-01 0.09015508 1.185e-15
     [967,] 8.964093e-01 0.08992073 1.511e-15
     [968,] 8.988841e-01 0.08968694 1.295e-15
     [969,] 9.013657e-01 0.08945370 -5.48e-16
     [970,] 9.038542e-01 0.08922101 5.017e-16
     [971,] 9.063495e-01 0.08898888 2.048e-15
     [972,] 9.088518e-01 0.08875729 -1.298e-16
     [973,] 9.113609e-01 0.08852625 1.269e-15
     [974,] 9.138770e-01 0.08829576 1.076e-15
     [975,] 9.164000e-01 0.08806582 1.928e-15
     [976,] 9.189299e-01 0.08783642 1.176e-15
     [977,] 9.214669e-01 0.08760757 -1.282e-16
     [978,] 9.240108e-01 0.08737926 -8.364e-16
     [979,] 9.265618e-01 0.08715149 1.794e-16
     [980,] 9.291198e-01 0.08692426 2.214e-15
     [981,] 9.316849e-01 0.08669758 5.678e-16
     [982,] 9.342571e-01 0.08647144 1.51e-15
     [983,] 9.368364e-01 0.08624583 2.013e-15
     [984,] 9.394228e-01 0.08602076 4.671e-16
     [985,] 9.420163e-01 0.08579623 1.022e-15
     [986,] 9.446170e-01 0.08557224 -7.696e-16
     [987,] 9.472249e-01 0.08534878 1.841e-15
     [988,] 9.498399e-01 0.08512585 7.052e-16
     [989,] 9.524622e-01 0.08490346 6.16e-16
     [990,] 9.550918e-01 0.08468160 1.27e-15
     [991,] 9.577285e-01 0.08446027 4.004e-16
     [992,] 9.603726e-01 0.08423947 1.996e-15
     [993,] 9.630240e-01 0.08401920 1.19e-15
     [994,] 9.656827e-01 0.08379946 -6.275e-16
     [995,] 9.683487e-01 0.08358024 2.048e-15
     [996,] 9.710221e-01 0.08336155 4.348e-16
     [997,] 9.737029e-01 0.08314339 2.071e-15
     [998,] 9.763910e-01 0.08292575 1.54e-15
     [999,] 9.790866e-01 0.08270863 1.947e-15
     [1000,] 9.817897e-01 0.08249204 -8.359e-16
     [1001,] 9.845002e-01 0.08227596 1.246e-15
     [1002,] 9.872181e-01 0.08206041 -1.082e-17
     [1003,] 9.899436e-01 0.08184537 1.843e-15
     [1004,] 9.926766e-01 0.08163086 -3.017e-16
     [1005,] 9.954172e-01 0.08141686 2.259e-15
     [1006,] 9.981653e-01 0.08120338 7.889e-16
     [1007,] 1.000921 0.08099041 5.262e-16
     [1008,] 1.003684 0.08077796 1.331e-15
     [1009,] 1.006455 0.08056602 5.278e-16
     [1010,] 1.009234 0.08035459 -7.839e-16
     [1011,] 1.012020 0.08014368 7.84e-16
     [1012,] 1.014814 0.07993328 6.174e-16
     [1013,] 1.017616 0.07972338 -1.363e-15
     [1014,] 1.020425 0.07951399 -3.713e-16
     [1015,] 1.023242 0.07930512 2.373e-15
     [1016,] 1.026067 0.07909674 3.376e-16
     [1017,] 1.028900 0.07888888 -3.344e-16
     [1018,] 1.031741 0.07868151 -1.132e-15
     [1019,] 1.034589 0.07847466 -3.345e-16
     [1020,] 1.037445 0.07826830 2.571e-15
     [1021,] 1.040309 0.07806245 2.91e-15
     [1022,] 1.043181 0.07785709 4.2e-16
     [1023,] 1.046061 0.07765224 7.487e-16
     [1024,] 1.048949 0.07744789 7.533e-16
     [1025,] 1.051845 0.07724403 2.243e-15
     [1026,] 1.054749 0.07704067 1.746e-16
     [1027,] 1.057661 0.07683781 1.125e-15
     [1028,] 1.060581 0.07663544 1.053e-15
     [1029,] 1.063509 0.07643357 2.059e-15
     [1030,] 1.066445 0.07623218 -2.19e-16
     [1031,] 1.069389 0.07603129 6.613e-16
     [1032,] 1.072342 0.07583090 3.146e-15
     [1033,] 1.075302 0.07563099 2.281e-15
     [1034,] 1.078271 0.07543157 -6.232e-16
     [1035,] 1.081248 0.07523264 2.647e-15
     [1036,] 1.084233 0.07503420 4.053e-16
     [1037,] 1.087226 0.07483624 2.541e-15
     [1038,] 1.090228 0.07463877 1.116e-15
     [1039,] 1.093238 0.07444178 1.596e-15
     [1040,] 1.096256 0.07424528 2.061e-16
     [1041,] 1.099282 0.07404925 2.819e-15
     [1042,] 1.102317 0.07385371 2.013e-15
     [1043,] 1.105360 0.07365866 1.224e-15
     [1044,] 1.108412 0.07346408 5.295e-16
     [1045,] 1.111472 0.07326997 7.013e-16
     [1046,] 1.114541 0.07307635 2.368e-15
     [1047,] 1.117618 0.07288320 1.002e-15
     [1048,] 1.120703 0.07269053 3.751e-15
     [1049,] 1.123797 0.07249834 2.525e-15
     [1050,] 1.126900 0.07230662 7.548e-16
     [1051,] 1.130011 0.07211537 1.902e-15
     [1052,] 1.133130 0.07192459 4.339e-15
     [1053,] 1.136259 0.07173428 2.514e-15
     [1054,] 1.139396 0.07154445 7.608e-16
     [1055,] 1.142541 0.07135508 2.756e-15
     [1056,] 1.145696 0.07116618 1.482e-15
     [1057,] 1.148859 0.07097775 6.014e-16
     [1058,] 1.152030 0.07078978 2.468e-15
     [1059,] 1.155211 0.07060228 1.88e-15
     [1060,] 1.158400 0.07041525 1.749e-15
     [1061,] 1.161598 0.07022868 9.421e-16
     [1062,] 1.164805 0.07004257 2.174e-15
     [1063,] 1.168021 0.06985692 2.467e-15
     [1064,] 1.171246 0.06967173 6.191e-16
     [1065,] 1.174479 0.06948700 -4.025e-15
     [1066,] 1.177722 0.06930273 1.785e-17
     [1067,] 1.180973 0.06911892 1.444e-15
     [1068,] 1.184233 0.06893557 2.266e-15
     [1069,] 1.187503 0.06875267 -1.612e-15
     [1070,] 1.190781 0.06857023 1.804e-15
     [1071,] 1.194069 0.06838824 -1.917e-15
     [1072,] 1.197365 0.06820670 1.414e-16
     [1073,] 1.200671 0.06802561 2.612e-15
     [1074,] 1.203986 0.06784498 1.541e-15
     [1075,] 1.207310 0.06766480 -2.9e-15
     [1076,] 1.210643 0.06748507 2.575e-15
     [1077,] 1.213985 0.06730578 -1.254e-15
     [1078,] 1.217337 0.06712694 1.479e-15
     [1079,] 1.220697 0.06694855 2.211e-15
     [1080,] 1.224067 0.06677061 1.708e-15
     [1081,] 1.227447 0.06659311 1.42e-15
     [1082,] 1.230835 0.06641605 1.596e-15
     [1083,] 1.234233 0.06623943 5.165e-15
     [1084,] 1.237641 0.06606326 -1.346e-16
     [1085,] 1.241058 0.06588753 7.042e-16
     [1086,] 1.244484 0.06571224 1.844e-15
     [1087,] 1.247920 0.06553739 3.424e-15
     [1088,] 1.251365 0.06536297 4.343e-16
     [1089,] 1.254820 0.06518900 -1.76e-15
     [1090,] 1.258284 0.06501546 -1.316e-15
     [1091,] 1.261758 0.06484235 4.354e-16
     [1092,] 1.265241 0.06466968 -1.304e-15
     [1093,] 1.268734 0.06449745 -1.081e-15
     [1094,] 1.272237 0.06432564 4.397e-15
     [1095,] 1.275749 0.06415427 -9.682e-16
     [1096,] 1.279271 0.06398333 3.356e-16
     [1097,] 1.282803 0.06381282 9.619e-16
     [1098,] 1.286345 0.06364274 -8.291e-16
     [1099,] 1.289896 0.06347308 -9.638e-16
     [1100,] 1.293457 0.06330386 2.37e-15
     [1101,] 1.297028 0.06313505 1.525e-15
     [1102,] 1.300609 0.06296668 -4.776e-16
     [1103,] 1.304200 0.06279873 -1.082e-15
     [1104,] 1.307800 0.06263120 2.098e-15
     [1105,] 1.311411 0.06246410 4.264e-15
     [1106,] 1.315031 0.06229741 -1.642e-15
     [1107,] 1.318662 0.06213115 -6.051e-16
     [1108,] 1.322302 0.06196531 9.043e-16
     [1109,] 1.325953 0.06179989 4.676e-16
     [1110,] 1.329613 0.06163488 -1.424e-15
     [1111,] 1.333284 0.06147030 -1.477e-16
     [1112,] 1.336965 0.06130613 4.286e-17
     [1113,] 1.340656 0.06114237 1.608e-15
     [1114,] 1.344357 0.06097903 -6.513e-16
     [1115,] 1.348069 0.06081610 1.216e-15
     [1116,] 1.351791 0.06065359 1.313e-15
     [1117,] 1.355523 0.06049148 6.946e-16
     [1118,] 1.359265 0.06032979 1.683e-15
     [1119,] 1.363017 0.06016851 -6.84e-16
     [1120,] 1.366780 0.06000764 3.3e-15
     [1121,] 1.370554 0.05984717 8.873e-16
     [1122,] 1.374338 0.05968712 1.855e-16
     [1123,] 1.378132 0.05952747 3.067e-15
     [1124,] 1.381937 0.05936822 -5.769e-16
     [1125,] 1.385752 0.05920938 9.491e-16
     [1126,] 1.389577 0.05905094 8.418e-16
     [1127,] 1.393414 0.05889291 -2.981e-16
     [1128,] 1.397261 0.05873528 7.784e-16
     [1129,] 1.401118 0.05857805 1.897e-15
     [1130,] 1.404986 0.05842122 2.076e-15
     [1131,] 1.408865 0.05826479 6.299e-15
     [1132,] 1.412755 0.05810876 -2.834e-15
     [1133,] 1.416655 0.05795312 -2.701e-15
     [1134,] 1.420566 0.05779789 5.481e-16
     [1135,] 1.424488 0.05764304 -1.214e-15
     [1136,] 1.428421 0.05748860 4.657e-16
     [1137,] 1.432364 0.05733455 1.047e-15
     [1138,] 1.436319 0.05718089 3.001e-15
     [1139,] 1.440284 0.05702762 1.834e-15
     [1140,] 1.444260 0.05687475 2.925e-15
     [1141,] 1.448248 0.05672226 -1.451e-15
     [1142,] 1.452246 0.05657017 -2.234e-15
     [1143,] 1.456255 0.05641846 3.785e-15
     [1144,] 1.460276 0.05626714 6.219e-15
     [1145,] 1.464307 0.05611621 -9.393e-16
     [1146,] 1.468350 0.05596567 2.553e-15
     [1147,] 1.472403 0.05581551 -1.411e-15
     [1148,] 1.476468 0.05566574 2.794e-15
     [1149,] 1.480545 0.05551635 4.194e-15
     [1150,] 1.484632 0.05536734 3.319e-15
     [1151,] 1.488731 0.05521871 4.775e-15
     [1152,] 1.492841 0.05507047 4.209e-15
     [1153,] 1.496962 0.05492261 1.754e-15
     [1154,] 1.501095 0.05477512 6.092e-16
     [1155,] 1.505239 0.05462802 3.527e-15
     [1156,] 1.509395 0.05448129 2.226e-15
     [1157,] 1.513562 0.05433494 4.702e-15
     [1158,] 1.517740 0.05418896 -2.868e-16
     [1159,] 1.521931 0.05404336 3.258e-16
     [1160,] 1.526132 0.05389814 1.93e-15
     [1161,] 1.530346 0.05375329 5.574e-15
     [1162,] 1.534571 0.05360881 -1.489e-15
     [1163,] 1.538807 0.05346470 -2.865e-16
     [1164,] 1.543055 0.05332097 1.257e-15
     [1165,] 1.547315 0.05317760 2.272e-15
     [1166,] 1.551587 0.05303460 -2.439e-15
     [1167,] 1.555871 0.05289197 6.461e-16
     [1168,] 1.560166 0.05274971 -2.643e-15
     [1169,] 1.564473 0.05260782 1.592e-15
     [1170,] 1.568793 0.05246629 1.375e-15
     [1171,] 1.573124 0.05232513 7.383e-16
     [1172,] 1.577467 0.05218433 1.303e-15
     [1173,] 1.581822 0.05204390 1.401e-15
     [1174,] 1.586189 0.05190382 -1.825e-15
     [1175,] 1.590568 0.05176411 1.82e-15
     [1176,] 1.594959 0.05162476 1.38e-15
     [1177,] 1.599362 0.05148577 3.022e-15
     [1178,] 1.603778 0.05134714 3.12e-15
     [1179,] 1.608206 0.05120887 4.785e-15
     [1180,] 1.612645 0.05107096 1.771e-15
     [1181,] 1.617098 0.05093340 3.378e-15
     [1182,] 1.621562 0.05079620 3.083e-16
     [1183,] 1.626039 0.05065935 2.321e-16
     [1184,] 1.630528 0.05052286 -2.585e-16
     [1185,] 1.635029 0.05038672 4.032e-15
     [1186,] 1.639543 0.05025094 5.987e-15
     [1187,] 1.644070 0.05011550 2.427e-15
     [1188,] 1.648609 0.04998042 2.938e-15
     [1189,] 1.653160 0.04984569 1.482e-15
     [1190,] 1.657724 0.04971131 1.398e-15
     [1191,] 1.662301 0.04957727 3.259e-15
     [1192,] 1.666890 0.04944359 4.512e-17
     [1193,] 1.671492 0.04931025 2.411e-15
     [1194,] 1.676106 0.04917725 7.395e-16
     [1195,] 1.680734 0.04904461 6.122e-17
     [1196,] 1.685374 0.04891230 1.705e-15
     [1197,] 1.690027 0.04878034 3.552e-16
     [1198,] 1.694693 0.04864873 -4.716e-15
     [1199,] 1.699371 0.04851746 3.419e-15
     [1200,] 1.704063 0.04838652 2.424e-15
     [1201,] 1.708767 0.04825593 -7.684e-17
     [1202,] 1.713485 0.04812568 4.636e-15
     [1203,] 1.718215 0.04799577 1.139e-15
     [1204,] 1.722959 0.04786619 3.06e-15
     [1205,] 1.727716 0.04773696 4.513e-15
     [1206,] 1.732486 0.04760806 4.991e-15
     [1207,] 1.737269 0.04747949 -2.328e-16
     [1208,] 1.742065 0.04735126 2.06e-15
     [1209,] 1.746874 0.04722337 4.925e-15
     [1210,] 1.751697 0.04709581 3.091e-15
     [1211,] 1.756533 0.04696858 -1.678e-15
     [1212,] 1.761382 0.04684168 2.994e-15
     [1213,] 1.766245 0.04671511 -2.946e-15
     [1214,] 1.771121 0.04658888 4.157e-15
     [1215,] 1.776011 0.04646297 1.52e-15
     [1216,] 1.780914 0.04633740 2.409e-15
     [1217,] 1.785831 0.04621215 2.761e-15
     [1218,] 1.790761 0.04608723 -6.297e-17
     [1219,] 1.795705 0.04596263 -1.754e-15
     [1220,] 1.800663 0.04583836 2.431e-15
     [1221,] 1.805634 0.04571442 4.365e-15
     [1222,] 1.810619 0.04559080 2.135e-15
     [1223,] 1.815617 0.04546750 5.142e-15
     [1224,] 1.820630 0.04534453 3.184e-16
     [1225,] 1.825656 0.04522187 2.112e-15
     [1226,] 1.830696 0.04509954 4.67e-16
     [1227,] 1.835751 0.04497753 -6.113e-16
     [1228,] 1.840819 0.04485584 4.059e-15
     [1229,] 1.845901 0.04473447 4.007e-15
     [1230,] 1.850997 0.04461341 1.444e-15
     [1231,] 1.856107 0.04449268 -2.546e-15
     [1232,] 1.861231 0.04437225 4.523e-15
     [1233,] 1.866370 0.04425215 1.655e-15
     [1234,] 1.871522 0.04413236 -3.949e-15
     [1235,] 1.876689 0.04401288 1.23e-15
     [1236,] 1.881870 0.04389372 7.23e-15
     [1237,] 1.887066 0.04377487 4.931e-15
     [1238,] 1.892276 0.04365634 -9.981e-17
     [1239,] 1.897500 0.04353811 3.511e-16
     [1240,] 1.902738 0.04342019 -3.712e-15
     [1241,] 1.907991 0.04330259 2.133e-15
     [1242,] 1.913259 0.04318529 4.685e-16
     [1243,] 1.918541 0.04306830 -3.525e-15
     [1244,] 1.923837 0.04295162 4.134e-15
     [1245,] 1.929149 0.04283525 8.496e-15
     [1246,] 1.934475 0.04271918 4.287e-15
     [1247,] 1.939815 0.04260342 -3.876e-15
     [1248,] 1.945171 0.04248796 4.275e-15
     [1249,] 1.950541 0.04237281 4.189e-16
     [1250,] 1.955926 0.04225796 -1.65e-15
     [1251,] 1.961326 0.04214341 3.528e-15
     [1252,] 1.966741 0.04202916 5.395e-15
     [1253,] 1.972170 0.04191521 1.415e-15
     [1254,] 1.977615 0.04180157 8.875e-15
     [1255,] 1.983075 0.04168822 -6.396e-17
     [1256,] 1.988550 0.04157517 2.273e-15
     [1257,] 1.994039 0.04146242 3.16e-15
     [1258,] 1.999545 0.04134997 -2.94e-15
     [1259,] 2.005065 0.04123782 -5.823e-15
     [1260,] 2.010600 0.04112596 -2.958e-15
     [1261,] 2.016151 0.04101439 5.387e-15
     [1262,] 2.021717 0.04090312 6.115e-15
     [1263,] 2.027299 0.04079215 3.474e-15
     [1264,] 2.032896 0.04068146 1.754e-15
     [1265,] 2.038508 0.04057107 2.655e-15
     [1266,] 2.044136 0.04046097 -8.541e-16
     [1267,] 2.049779 0.04035116 -2.774e-15
     [1268,] 2.055438 0.04024164 4.348e-15
     [1269,] 2.061113 0.04013241 -2.488e-15
     [1270,] 2.066803 0.04002347 3.495e-16
     [1271,] 2.072509 0.03991482 2.992e-15
     [1272,] 2.078231 0.03980645 -3.906e-15
     [1273,] 2.083968 0.03969838 1.591e-15
     [1274,] 2.089722 0.03959058 -2.549e-15
     [1275,] 2.095491 0.03948307 4.957e-15
     [1276,] 2.101276 0.03937585 2.67e-15
     [1277,] 2.107077 0.03926891 4.467e-15
     [1278,] 2.112894 0.03916226 -4.296e-15
     [1279,] 2.118728 0.03905588 1.852e-15
     [1280,] 2.124577 0.03894979 3.338e-15
     [1281,] 2.130442 0.03884398 3.579e-15
     [1282,] 2.136324 0.03873845 -2.706e-15
     [1283,] 2.142222 0.03863320 -9.48e-16
     [1284,] 2.148136 0.03852822 -3.996e-15
     [1285,] 2.154067 0.03842353 -6.634e-16
     [1286,] 2.160014 0.03831911 9.675e-15
     [1287,] 2.165977 0.03821497 1.267e-15
     [1288,] 2.171957 0.03811111 7.876e-15
     [1289,] 2.177953 0.03800752 1.106e-14
     [1290,] 2.183966 0.03790421 -2.043e-15
     [1291,] 2.189995 0.03780117 6.037e-15
     [1292,] 2.196041 0.03769841 1.922e-15
     [1293,] 2.202104 0.03759591 3.805e-15
     [1294,] 2.208184 0.03749369 1.072e-15
     [1295,] 2.214280 0.03739175 1.656e-15
     [1296,] 2.220393 0.03729007 -6.119e-15
     [1297,] 2.226523 0.03718866 8.169e-16
     [1298,] 2.232670 0.03708752 8.494e-16
     [1299,] 2.238834 0.03698665 1.247e-15
     [1300,] 2.245015 0.03688605 1.359e-14
     [1301,] 2.251213 0.03678572 2.096e-15
     [1302,] 2.257428 0.03668565 9.576e-15
     [1303,] 2.263660 0.03658585 5.53e-15
     [1304,] 2.269909 0.03648631 6.364e-15
     [1305,] 2.276176 0.03638704 1.473e-14
     [1306,] 2.282460 0.03628803 1.292e-15
     [1307,] 2.288761 0.03618929 9.477e-15
     [1308,] 2.295080 0.03609081 -8.545e-15
     [1309,] 2.301416 0.03599259 -1.951e-16
     [1310,] 2.307770 0.03589463 5.173e-15
     [1311,] 2.314141 0.03579694 -8.596e-15
     [1312,] 2.320530 0.03569950 9.46e-16
     [1313,] 2.326937 0.03560233 2.996e-15
     [1314,] 2.333361 0.03550541 -4.236e-15
     [1315,] 2.339803 0.03540875 5.341e-15
     [1316,] 2.346262 0.03531235 1.826e-15
     [1317,] 2.352740 0.03521620 -6.1e-16
     [1318,] 2.359235 0.03512031 1.084e-14
     [1319,] 2.365748 0.03502468 9.829e-15
     [1320,] 2.372280 0.03492930 6.123e-15
     [1321,] 2.378829 0.03483418 1.011e-14
     [1322,] 2.385396 0.03473931 5.013e-15
     [1323,] 2.391982 0.03464469 8.164e-15
     [1324,] 2.398586 0.03455033 7.688e-15
     [1325,] 2.405208 0.03445622 -3.095e-15
     [1326,] 2.411848 0.03436236 -4.061e-15
     [1327,] 2.418506 0.03426875 3.862e-15
     [1328,] 2.425183 0.03417539 1.388e-14
     [1329,] 2.431879 0.03408228 -1.475e-15
     [1330,] 2.438593 0.03398941 -2.499e-15
     [1331,] 2.445325 0.03389680 -5.722e-16
     [1332,] 2.452076 0.03380443 -1.722e-15
     [1333,] 2.458846 0.03371231 -7.495e-16
     [1334,] 2.465634 0.03362044 4.531e-15
     [1335,] 2.472441 0.03352881 2.737e-17
     [1336,] 2.479267 0.03343743 1.247e-15
     [1337,] 2.486112 0.03334629 9.009e-16
     [1338,] 2.492975 0.03325540 -3.405e-15
     [1339,] 2.499858 0.03316474 -2.393e-15
     [1340,] 2.506759 0.03307433 7.876e-15
     [1341,] 2.513680 0.03298417 -3.798e-16
     [1342,] 2.520619 0.03289424 -9.799e-15
     [1343,] 2.527578 0.03280455 -1.839e-15
     [1344,] 2.534556 0.03271511 4.918e-15
     [1345,] 2.541554 0.03262590 5.826e-15
     [1346,] 2.548570 0.03253693 -6.076e-15
     [1347,] 2.555606 0.03244821 1.127e-14
     [1348,] 2.562662 0.03235971 -2.713e-15
     [1349,] 2.569737 0.03227146 4.841e-15
     [1350,] 2.576831 0.03218344 1.435e-14
     [1351,] 2.583945 0.03209566 1.402e-14
     [1352,] 2.591079 0.03200811 -5.428e-15
     [1353,] 2.598232 0.03192080 -6.736e-15
     [1354,] 2.605405 0.03183372 7.513e-15
     [1355,] 2.612598 0.03174687 -6.248e-16
     [1356,] 2.619811 0.03166026 1.834e-15
     [1357,] 2.627044 0.03157388 1.005e-15
     [1358,] 2.634297 0.03148773 1.377e-14
     [1359,] 2.641569 0.03140182 1.272e-14
     [1360,] 2.648862 0.03131613 -1.665e-15
     [1361,] 2.656175 0.03123067 1.144e-15
     [1362,] 2.663508 0.03114544 -5.317e-16
     [1363,] 2.670861 0.03106045 1.541e-14
     [1364,] 2.678235 0.03097567 2.792e-15
     [1365,] 2.685629 0.03089113 1.89e-15
     [1366,] 2.693043 0.03080681 1.441e-14
     [1367,] 2.700478 0.03072272 7.815e-15
     [1368,] 2.707934 0.03063886 -1.603e-15
     [1369,] 2.715410 0.03055522 -4.211e-17
     [1370,] 2.722906 0.03047181 -8.222e-15
     [1371,] 2.730424 0.03038862 -2.179e-15
     [1372,] 2.737962 0.03030565 -2.697e-15
     [1373,] 2.745521 0.03022291 4.608e-15
     [1374,] 2.753100 0.03014038 2.405e-15
     [1375,] 2.760701 0.03005808 7.638e-15
     [1376,] 2.768323 0.02997600 5.308e-15
     [1377,] 2.775965 0.02989415 3.711e-17
     [1378,] 2.783629 0.02981251 2.496e-14
     [1379,] 2.791314 0.02973109 2.704e-16
     [1380,] 2.799020 0.02964989 1.113e-14
     [1381,] 2.806748 0.02956891 1.749e-14
     [1382,] 2.814497 0.02948815 4.889e-15
     [1383,] 2.822267 0.02940760 4.073e-15
     [1384,] 2.830058 0.02932727 7.563e-15
     [1385,] 2.837871 0.02924716 4.028e-15
     [1386,] 2.845706 0.02916726 4.47e-15
     [1387,] 2.853563 0.02908758 6.687e-15
     [1388,] 2.861441 0.02900811 -8.354e-16
     [1389,] 2.869340 0.02892885 1.89e-14
     [1390,] 2.877262 0.02884981 -6.077e-15
     [1391,] 2.885205 0.02877099 -5.762e-15
     [1392,] 2.893171 0.02869237 2.121e-14
     [1393,] 2.901158 0.02861397 -4.017e-15
     [1394,] 2.909168 0.02853577 2.16e-14
     [1395,] 2.917199 0.02845779 7.755e-15
     [1396,] 2.925253 0.02838002 3.335e-15
     [1397,] 2.933329 0.02830246 -7.373e-15
     [1398,] 2.941427 0.02822510 3.279e-15
     [1399,] 2.949548 0.02814796 -4.857e-15
     [1400,] 2.957691 0.02807102 -6.76e-15
     [1401,] 2.965856 0.02799429 8.868e-15
     [1402,] 2.974044 0.02791777 -9.918e-16
     [1403,] 2.982255 0.02784145 1.538e-15
     [1404,] 2.990488 0.02776534 4.298e-16
     [1405,] 2.998744 0.02768943 -2.363e-15
     [1406,] 3.007023 0.02761373 2.196e-14
     [1407,] 3.015325 0.02753824 2.613e-14
     [1408,] 3.023650 0.02746294 -2.491e-14
     [1409,] 3.031997 0.02738785 -1.352e-14
     [1410,] 3.040368 0.02731297 8.453e-17
     [1411,] 3.048762 0.02723828 1.472e-14
     [1412,] 3.057178 0.02716380 -1.578e-14
     [1413,] 3.065619 0.02708951 7.976e-15
     [1414,] 3.074082 0.02701543 -3.519e-17
     [1415,] 3.082569 0.02694155 2.485e-14
     [1416,] 3.091079 0.02686787 1.516e-14
     [1417,] 3.099613 0.02679438 1.35e-14
     [1418,] 3.108170 0.02672110 1.905e-14
     [1419,] 3.116751 0.02664801 1.632e-14
     [1420,] 3.125356 0.02657512 -1.224e-14
     [1421,] 3.133984 0.02650243 4.292e-14
     [1422,] 3.142636 0.02642993 1.372e-14
     [1423,] 3.151313 0.02635763 3.637e-14
     [1424,] 3.160013 0.02628552 -4.703e-15
     [1425,] 3.168737 0.02621361 2.371e-14
     [1426,] 3.177485 0.02614190 1.198e-14
     [1427,] 3.186257 0.02607037 2.781e-14
     [1428,] 3.195054 0.02599905 -9.911e-15
     [1429,] 3.203875 0.02592791 -8.345e-15
     [1430,] 3.212720 0.02585696 -1.124e-14
     [1431,] 3.221589 0.02578621 2.209e-14
     [1432,] 3.230483 0.02571565 -8.656e-15
     [1433,] 3.239402 0.02564528 3.227e-14
     [1434,] 3.248345 0.02557510 1.513e-14
     [1435,] 3.257313 0.02550511 1.033e-14
     [1436,] 3.266306 0.02543531 1.007e-14
     [1437,] 3.275323 0.02536570 -2.071e-14
     [1438,] 3.284366 0.02529628 -2.28e-14
     [1439,] 3.293433 0.02522704 3.546e-14
     [1440,] 3.302526 0.02515799 1.541e-14
     [1441,] 3.311643 0.02508913 -4.71e-15
     [1442,] 3.320786 0.02502045 7.556e-15
     [1443,] 3.329954 0.02495197 3.761e-14
     [1444,] 3.339147 0.02488366 -3.022e-14
     [1445,] 3.348366 0.02481554 1.302e-16
     [1446,] 3.357610 0.02474761 2.837e-14
     [1447,] 3.366879 0.02467986 -1.359e-15
     [1448,] 3.376174 0.02461229 8.289e-15
     [1449,] 3.385495 0.02454491 4.085e-14
     [1450,] 3.394842 0.02447770 1.907e-14
     [1451,] 3.404214 0.02441069 -1.151e-14
     [1452,] 3.413613 0.02434385 -2.512e-14
     [1453,] 3.423037 0.02427719 2.098e-14
     [1454,] 3.432487 0.02421071 7.161e-15
     [1455,] 3.441963 0.02414442 2.726e-16
     [1456,] 3.451466 0.02407830 1.797e-14
     [1457,] 3.460994 0.02401236 1.308e-14
     [1458,] 3.470549 0.02394660 2.285e-14
     [1459,] 3.480131 0.02388102 6.119e-15
     [1460,] 3.489739 0.02381562 1.185e-14
     [1461,] 3.499373 0.02375040 1.861e-14
     [1462,] 3.509034 0.02368535 6.512e-15
     [1463,] 3.518722 0.02362047 2.206e-15
     [1464,] 3.528436 0.02355578 -1.286e-14
     [1465,] 3.538177 0.02349126 1.46e-14
     [1466,] 3.547945 0.02342691 5.589e-15
     [1467,] 3.557740 0.02336274 -1.856e-15
     [1468,] 3.567563 0.02329874 -1.84e-14
     [1469,] 3.577412 0.02323492 -4.375e-15
     [1470,] 3.587288 0.02317127 6.146e-16
     [1471,] 3.597192 0.02310779 1.627e-14
     [1472,] 3.607123 0.02304448 1.101e-14
     [1473,] 3.617081 0.02298135 2.667e-15
     [1474,] 3.627067 0.02291839 2.512e-14
     [1475,] 3.637081 0.02285560 -2.623e-15
     [1476,] 3.647122 0.02279297 1.984e-14
     [1477,] 3.657191 0.02273052 1.004e-14
     [1478,] 3.667287 0.02266824 1.975e-14
     [1479,] 3.677412 0.02260613 2.519e-14
     [1480,] 3.687564 0.02254418 1.125e-14
     [1481,] 3.697745 0.02248241 1.612e-14
     [1482,] 3.707954 0.02242080 1.939e-14
     [1483,] 3.718190 0.02235936 6.39e-15
     [1484,] 3.728456 0.02229808 -5.704e-15
     [1485,] 3.738749 0.02223698 -1.124e-15
     [1486,] 3.749071 0.02217604 3.336e-16
     [1487,] 3.759421 0.02211526 9.598e-15
     [1488,] 3.769800 0.02205465 -5.367e-15
     [1489,] 3.780208 0.02199420 2.74e-14
     [1490,] 3.790644 0.02193392 -1.146e-14
     [1491,] 3.801109 0.02187380 -2.23e-15
     [1492,] 3.811603 0.02181385 -3.821e-15
     [1493,] 3.822126 0.02175405 3.662e-14
     [1494,] 3.832678 0.02169442 5.64e-15
     [1495,] 3.843259 0.02163496 3.927e-14
     [1496,] 3.853869 0.02157565 -2.651e-15
     [1497,] 3.864509 0.02151651 4.793e-15
     [1498,] 3.875178 0.02145752 2.738e-14
     [1499,] 3.885877 0.02139870 -1.941e-14
     [1500,] 3.896605 0.02134003 2.836e-14
     [1501,] 3.907362 0.02128153 9.249e-15
     [1502,] 3.918150 0.02122318 4.747e-15
     [1503,] 3.928967 0.02116500 -6.158e-15
     [1504,] 3.939814 0.02110697 -1.438e-14
     [1505,] 3.950691 0.02104910 6.346e-15
     [1506,] 3.961598 0.02099139 2.29e-14
     [1507,] 3.972535 0.02093383 -7.223e-15
     [1508,] 3.983502 0.02087643 2.108e-14
     [1509,] 3.994499 0.02081919 2.867e-14
     [1510,] 4.005527 0.02076210 -4.883e-14
     [1511,] 4.016586 0.02070517 -1.666e-14
     [1512,] 4.027675 0.02064839 9.445e-15
     [1513,] 4.038794 0.02059177 1.831e-14
     [1514,] 4.049944 0.02053530 4.412e-15
     [1515,] 4.061125 0.02047898 -1.698e-15
     [1516,] 4.072337 0.02042282 -1.087e-14
     [1517,] 4.083580 0.02036681 1.918e-14
     [1518,] 4.094854 0.02031095 1.904e-14
     [1519,] 4.106159 0.02025525 -1.039e-14
     [1520,] 4.117495 0.02019969 3.497e-14
     [1521,] 4.128862 0.02014429 -2.582e-14
     [1522,] 4.140261 0.02008904 -1.19e-14
     [1523,] 4.151691 0.02003394 1.494e-14
     [1524,] 4.163153 0.01997899 1.775e-14
     [1525,] 4.174647 0.01992419 -2.469e-14
     [1526,] 4.186172 0.01986954 -2.046e-14
     [1527,] 4.197729 0.01981503 -2.456e-16
     [1528,] 4.209318 0.01976068 2.497e-14
     [1529,] 4.220939 0.01970647 5.371e-15
     [1530,] 4.232592 0.01965241 4.262e-14
     [1531,] 4.244277 0.01959850 -3.061e-14
     [1532,] 4.255995 0.01954474 3.803e-14
     [1533,] 4.267745 0.01949112 -2.461e-16
     [1534,] 4.279527 0.01943765 -4.938e-16
     [1535,] 4.291342 0.01938432 -5.43e-15
     [1536,] 4.303189 0.01933114 3.69e-14
     [1537,] 4.315069 0.01927810 -3.923e-14
     [1538,] 4.326982 0.01922521 -8.734e-15
     [1539,] 4.338928 0.01917246 1.602e-14
     [1540,] 4.350907 0.01911986 -3.715e-14
     [1541,] 4.362919 0.01906740 1.897e-14
     [1542,] 4.374964 0.01901508 -1.023e-14
     [1543,] 4.387042 0.01896291 6.137e-15
     [1544,] 4.399153 0.01891087 -2.593e-14
     [1545,] 4.411299 0.01885898 -1.777e-14
     [1546,] 4.423477 0.01880723 6.362e-15
     [1547,] 4.435689 0.01875563 -1.193e-14
     [1548,] 4.447935 0.01870416 -1.323e-14
     [1549,] 4.460215 0.01865283 -2.371e-14
     [1550,] 4.472529 0.01860164 4.416e-14
     [1551,] 4.484876 0.01855060 4.305e-14
     [1552,] 4.497258 0.01849969 3.001e-14
     [1553,] 4.509674 0.01844892 -1.089e-14
     [1554,] 4.522124 0.01839829 -3.901e-14
     [1555,] 4.534609 0.01834779 5.301e-14
     [1556,] 4.547128 0.01829744 -1.24e-14
     [1557,] 4.559681 0.01824722 8.416e-15
     [1558,] 4.572269 0.01819714 -7.685e-15
     [1559,] 4.584892 0.01814719 -3.141e-14
     [1560,] 4.597550 0.01809738 3.229e-14
     [1561,] 4.610243 0.01804771 8.755e-15
     [1562,] 4.622971 0.01799818 3.52e-15
     [1563,] 4.635734 0.01794877 1.865e-14
     [1564,] 4.648532 0.01789951 1.039e-14
     [1565,] 4.661366 0.01785037 -2.598e-15
     [1566,] 4.674235 0.01780138 2.082e-14
     [1567,] 4.687139 0.01775251 -4.675e-14
     [1568,] 4.700079 0.01770378 -4.241e-14
     [1569,] 4.713055 0.01765518 4.733e-14
     [1570,] 4.726067 0.01760672 -8.142e-15
     [1571,] 4.739114 0.01755838 -1.911e-14
     [1572,] 4.752198 0.01751018 -2.144e-14
     [1573,] 4.765318 0.01746211 -1.522e-14
     [1574,] 4.778474 0.01741417 -7.229e-15
     [1575,] 4.791666 0.01736636 -2.416e-15
     [1576,] 4.804895 0.01731869 -4.541e-14
     [1577,] 4.818160 0.01727114 -7.219e-15
     [1578,] 4.831462 0.01722372 1.319e-14
     [1579,] 4.844800 0.01717643 4.512e-15
     [1580,] 4.858176 0.01712927 1.865e-15
     [1581,] 4.871588 0.01708224 4.294e-14
     [1582,] 4.885037 0.01703534 2.082e-14
     [1583,] 4.898524 0.01698857 5.585e-14
     [1584,] 4.912047 0.01694192 3.466e-14
     [1585,] 4.925608 0.01689541 -1.326e-14
     [1586,] 4.939207 0.01684901 3.65e-14
     [1587,] 4.952843 0.01680275 -5.954e-14
     [1588,] 4.966517 0.01675661 -6.234e-14
     [1589,] 4.980228 0.01671060 -3.293e-14
     [1590,] 4.993977 0.01666471 -9.287e-15
     [1591,] 5.007764 0.01661895 -5.103e-14
     [1592,] 5.021590 0.01657331 3.576e-14
     [1593,] 5.035453 0.01652780 1.084e-14
     [1594,] 5.049355 0.01648242 6.429e-14
     [1595,] 5.063295 0.01643715 1.895e-14
     [1596,] 5.077274 0.01639201 -1.663e-14
     [1597,] 5.091291 0.01634700 -1.755e-14
     [1598,] 5.105347 0.01630210 -3.623e-14
     [1599,] 5.119441 0.01625733 7.705e-14
     [1600,] 5.133575 0.01621269 8.107e-14
     [1601,] 5.147748 0.01616816 -5.02e-14
     [1602,] 5.161959 0.01612376 -6.217e-14
     [1603,] 5.176210 0.01607947 -1.751e-14
     [1604,] 5.190501 0.01603531 -1.608e-14
     [1605,] 5.204831 0.01599127 -2.249e-14
     [1606,] 5.219200 0.01594735 3.152e-14
     [1607,] 5.233609 0.01590355 2.939e-14
     [1608,] 5.248058 0.01585987 1.076e-14
     [1609,] 5.262546 0.01581631 6.705e-14
     [1610,] 5.277075 0.01577286 1.029e-14
     [1611,] 5.291644 0.01572954 5.312e-14
     [1612,] 5.306253 0.01568633 -8.552e-14
     [1613,] 5.320902 0.01564325 6.729e-14
     [1614,] 5.335592 0.01560028 -1.031e-14
     [1615,] 5.350322 0.01555743 -1.604e-14
     [1616,] 5.365093 0.01551469 1.058e-13
     [1617,] 5.379905 0.01547207 5.09e-14
     [1618,] 5.394758 0.01542957 1.946e-14
     [1619,] 5.409652 0.01538719 9.621e-14
     [1620,] 5.424586 0.01534492 9.065e-14
     [1621,] 5.439562 0.01530276 8.538e-14
     [1622,] 5.454580 0.01526073 8.059e-14
     [1623,] 5.469639 0.01521880 7.582e-14
     [1624,] 5.484739 0.01517699 7.153e-14
     [1625,] 5.499881 0.01513530 6.751e-14
     [1626,] 5.515065 0.01509372 6.365e-14
     [1627,] 5.530291 0.01505225 6e-14
     [1628,] 5.545559 0.01501090 5.648e-14
     [1629,] 5.560869 0.01496966 5.319e-14
     [1630,] 5.576221 0.01492853 5.026e-14
     [1631,] 5.591616 0.01488752 4.74e-14
     [1632,] 5.607053 0.01484662 4.472e-14
     [1633,] 5.622533 0.01480583 4.205e-14
     [1634,] 5.638055 0.01476515 3.96e-14
     [1635,] 5.653621 0.01472458 3.732e-14
     [1636,] 5.669229 0.01468412 3.523e-14
     [1637,] 5.684881 0.01464378 3.318e-14
     [1638,] 5.700575 0.01460354 3.131e-14
     [1639,] 5.716313 0.01456342 2.948e-14
     [1640,] 5.732095 0.01452340 2.786e-14
     [1641,] 5.747920 0.01448350 2.608e-14
     [1642,] 5.763788 0.01444370 2.469e-14
     [1643,] 5.779701 0.01440401 2.329e-14
     [1644,] 5.795657 0.01436443 2.191e-14
     [1645,] 5.811658 0.01432496 2.066e-14
     [1646,] 5.827702 0.01428560 1.948e-14
     [1647,] 5.843791 0.01424634 1.828e-14
     [1648,] 5.859925 0.01420720 1.729e-14
     [1649,] 5.876103 0.01416816 1.636e-14
     [1650,] 5.892325 0.01412922 1.538e-14
     [1651,] 5.908593 0.01409040 1.446e-14
     [1652,] 5.924905 0.01405167 1.372e-14
     [1653,] 5.941262 0.01401306 1.288e-14
     [1654,] 5.957665 0.01397455 1.203e-14
     [1655,] 5.974112 0.01393615 1.145e-14
     [1656,] 5.990605 0.01389785 1.08e-14
     [1657,] 6.007144 0.01385966 1.003e-14
     [1658,] 6.023729 0.01382157 9.508e-15
     [1659,] 6.040359 0.01378358 9.021e-15
     [1660,] 6.057035 0.01374570 8.534e-15
     [1661,] 6.073757 0.01370793 7.955e-15
     [1662,] 6.090525 0.01367025 7.403e-15
     [1663,] 6.107340 0.01363268 6.97e-15
     [1664,] 6.124201 0.01359522 6.675e-15
     [1665,] 6.141108 0.01355785 6.239e-15
     [1666,] 6.158062 0.01352059 5.955e-15
     [1667,] 6.175063 0.01348343 5.494e-15
     [1668,] 6.192111 0.01344637 5.252e-15
     [1669,] 6.209206 0.01340941 4.995e-15
     [1670,] 6.226348 0.01337256 4.568e-15
     [1671,] 6.243538 0.01333580 4.355e-15
     [1672,] 6.260775 0.01329915 4.07e-15
     [1673,] 6.278060 0.01326259 4.011e-15
     [1674,] 6.295392 0.01322614 3.663e-15
     [1675,] 6.312772 0.01318979 3.446e-15
     [1676,] 6.330200 0.01315353 3.286e-15
     [1677,] 6.347676 0.01311738 3.085e-15
     [1678,] 6.365201 0.01308132 2.747e-15
     [1679,] 6.382774 0.01304537 2.705e-15
     [1680,] 6.400395 0.01300951 2.549e-15
     [1681,] 6.418065 0.01297375 2.425e-15
     [1682,] 6.435784 0.01293809 2.28e-15
     [1683,] 6.453552 0.01290252 2.132e-15
     [1684,] 6.471368 0.01286705 2.002e-15
     [1685,] 6.489234 0.01283168 1.88e-15
     [1686,] 6.507150 0.01279641 1.846e-15
     [1687,] 6.525114 0.01276124 1.664e-15
     [1688,] 6.543129 0.01272616 1.497e-15
     [1689,] 6.561193 0.01269117 1.562e-15
     [1690,] 6.579307 0.01265628 1.381e-15
     [1691,] 6.597471 0.01262149 1.384e-15
     [1692,] 6.615685 0.01258680 1.241e-15
     [1693,] 6.633949 0.01255219 1.224e-15
     [1694,] 6.652264 0.01251769 1.121e-15
     [1695,] 6.670629 0.01248328 9.35e-16
     [1696,] 6.689046 0.01244896 9.259e-16
     [1697,] 6.707512 0.01241473 8.073e-16
     [1698,] 6.726030 0.01238060 7.786e-16
     [1699,] 6.744599 0.01234657 8.528e-16
     [1700,] 6.763220 0.01231262 6.848e-16
     [1701,] 6.781891 0.01227877 7.067e-16
     [1702,] 6.800615 0.01224502 6.823e-16
     [1703,] 6.819390 0.01221135 6.953e-16
     [1704,] 6.838216 0.01217778 4.6e-16
     [1705,] 6.857095 0.01214430 4.165e-16
     [1706,] 6.876026 0.01211091 3.989e-16
     [1707,] 6.895009 0.01207761 4.197e-16
     [1708,] 6.914045 0.01204441 4.496e-16
     [1709,] 6.933133 0.01201129 2.82e-16
     [1710,] 6.952274 0.01197827 4.606e-16
     [1711,] 6.971467 0.01194533 3.791e-16
     [1712,] 6.990714 0.01191249 2.57e-16
     [1713,] 7.010014 0.01187974 2.866e-16
     [1714,] 7.029367 0.01184708 3.743e-16
     [1715,] 7.048773 0.01181450 3.281e-16
     [1716,] 7.068233 0.01178202 2.185e-16
     [1717,] 7.087747 0.01174962 3.291e-16
     [1718,] 7.107315 0.01171732 2.477e-16
     [1719,] 7.126936 0.01168510 2.109e-16
     [1720,] 7.146612 0.01165297 2.017e-16
     [1721,] 7.166342 0.01162093 6.539e-17
     [1722,] 7.186127 0.01158897 1.037e-16
     [1723,] 7.205966 0.01155711 1.101e-16
     [1724,] 7.225860 0.01152533 1.341e-17
     [1725,] 7.245809 0.01149364 1.204e-16
     [1726,] 7.265813 0.01146203 4.788e-17
     [1727,] 7.285872 0.01143052 1.286e-16
     [1728,] 7.305987 0.01139909 1.012e-16
     [1729,] 7.326157 0.01136774 8.558e-17
     [1730,] 7.346383 0.01133648 1.444e-16
     [1731,] 7.366665 0.01130531 -1.294e-17
     [1732,] 7.387002 0.01127422 8.415e-17
     [1733,] 7.407396 0.01124322 5.994e-17
     [1734,] 7.427846 0.01121230 3.653e-17
     [1735,] 7.448353 0.01118147 1.144e-16
     [1736,] 7.468916 0.01115072 8.587e-18
     [1737,] 7.489536 0.01112006 1.529e-16
     [1738,] 7.510213 0.01108948 -4.146e-16
     [1739,] 7.530947 0.01105898 -4.109e-16
     [1740,] 7.551738 0.01102857 -4.397e-16
     [1741,] 7.572587 0.01099824 -2.923e-16
     [1742,] 7.593493 0.01096800 -3.568e-16
     [1743,] 7.614457 0.01093783 -3.542e-16
     [1744,] 7.635479 0.01090775 -3.314e-16
     [1745,] 7.656558 0.01087776 -2.319e-16
     [1746,] 7.677696 0.01084784 -1.937e-16
     [1747,] 7.698893 0.01081801 -3.779e-16
     [1748,] 7.720148 0.01078826 -2.408e-16
     [1749,] 7.741461 0.01075859 -3.285e-16
     [1750,] 7.762834 0.01072900 -2.45e-16
     [1751,] 7.784265 0.01069949 -4.122e-16
     [1752,] 7.805756 0.01067007 -1.744e-16
     [1753,] 7.827306 0.01064072 -2.245e-16
     [1754,] 7.848915 0.01061146 -1.143e-16
     [1755,] 7.870584 0.01058228 -1.208e-16
     [1756,] 7.892313 0.01055317 -2.098e-16
     [1757,] 7.914102 0.01052415 -2.054e-16
     [1758,] 7.935951 0.01049520 -1.702e-16
     [1759,] 7.957860 0.01046634 -1.869e-16
     [1760,] 7.979830 0.01043755 -7.887e-17
     [1761,] 8.001861 0.01040885 -1.832e-16
     [1762,] 8.023952 0.01038022 -3.025e-16
     [1763,] 8.046104 0.01035167 -2.032e-16
     [1764,] 8.068318 0.01032320 -7.211e-17
     [1765,] 8.090592 0.01029481 -4.149e-17
     [1766,] 8.112929 0.01026649 -2.485e-16
     [1767,] 8.135327 0.01023825 -3.832e-17
     [1768,] 8.157786 0.01021009 -1.914e-16
     [1769,] 8.180308 0.01018201 -2.145e-16
     [1770,] 8.202892 0.01015401 2.517e-18
     [1771,] 8.225538 0.01012608 -7.205e-17
     [1772,] 8.248247 0.01009823 -6.848e-17
     [1773,] 8.271019 0.01007045 -1.489e-16
     [1774,] 8.293853 0.01004275 -2.556e-16
     [1775,] 8.316751 0.01001513 -2.442e-16
     [1776,] 8.339711 0.00998758 -2.471e-17
     [1777,] 8.362735 0.00996011 -2.17e-16
     [1778,] 8.385823 0.00993272 -1.558e-16
     [1779,] 8.408974 0.00990539 -1.62e-17
     [1780,] 8.432189 0.00987815 -1.539e-16
     [1781,] 8.455469 0.00985098 -1.104e-16
     [1782,] 8.478812 0.00982388 4.677e-17
     [1783,] 8.502220 0.00979686 1.204e-16
     [1784,] 8.525693 0.00976991 1.811e-16
     [1785,] 8.549231 0.00974304 8.497e-17
     [1786,] 8.572833 0.00971624 1.501e-16
     [1787,] 8.596501 0.00968951 5.23e-17
     [1788,] 8.620234 0.00966286 1.735e-16
     [1789,] 8.644032 0.00963628 4.978e-17
     [1790,] 8.667896 0.00960977 1.398e-17
     [1791,] 8.691827 0.00958334 1.379e-16
     [1792,] 8.715823 0.00955698 1.98e-16
     [1793,] 8.739885 0.00953069 1.847e-16
     [1794,] 8.764014 0.00950447 1.555e-16
     [1795,] 8.788209 0.00947832 6.017e-17
     [1796,] 8.812472 0.00945225 1.039e-16
     [1797,] 8.836801 0.00942625 -1.388e-17
     [1798,] 8.861197 0.00940032 2.376e-17
     [1799,] 8.885661 0.00937446 6.669e-17
     [1800,] 8.910192 0.00934867 1.162e-16
     [1801,] 8.934791 0.00932296 -1.462e-17
     [1802,] 8.959458 0.00929731 5.874e-19
     [1803,] 8.984193 0.00927173 -5.881e-17
     [1804,] 9.008996 0.00924623 -2.404e-17
     [1805,] 9.033868 0.00922079 1.485e-16
     [1806,] 9.058809 0.00919543 1.256e-16
     [1807,] 9.083818 0.00917013 -3.139e-17
     [1808,] 9.108896 0.00914490 8.469e-17
     [1809,] 9.134044 0.00911975 -6.71e-19
     [1810,] 9.159261 0.00909466 1.242e-17
     [1811,] 9.184548 0.00906964 3.433e-18
     [1812,] 9.209904 0.00904469 -3.947e-17
     [1813,] 9.235330 0.00901980 -4.689e-17
     [1814,] 9.260827 0.00899499 1.167e-16
     [1815,] 9.286394 0.00897024 5.882e-17
     [1816,] 9.312032 0.00894557 1.5e-17
     [1817,] 9.337740 0.00892096 -1.168e-16
     [1818,] 9.363519 0.00889641 1.749e-17
     [1819,] 9.389370 0.00887194 -1.304e-16
     [1820,] 9.415292 0.00884753 -3.264e-17
     [1821,] 9.441285 0.00882319 -2.846e-17
     [1822,] 9.467351 0.00879892 -1.343e-16
     [1823,] 9.493488 0.00877471 2.75e-17
     [1824,] 9.519697 0.00875057 1.389e-17
     [1825,] 9.545979 0.00872650 -9.471e-18
     [1826,] 9.572333 0.00870249 -1.314e-17
     [1827,] 9.598760 0.00867855 7.487e-17
     [1828,] 9.625260 0.00865467 1.187e-17
     [1829,] 9.651833 0.00863086 -1.369e-16
     [1830,] 9.678480 0.00860711 -3.837e-17
     [1831,] 9.705200 0.00858343 -2.653e-17
     [1832,] 9.731994 0.00855982 1.415e-16
     [1833,] 9.758861 0.00853627 8.007e-17
     [1834,] 9.785803 0.00851278 -1.995e-17
     [1835,] 9.812820 0.00848936 -8.4e-17
     [1836,] 9.839911 0.00846600 -1.04e-17
     [1837,] 9.867076 0.00844271 -3.402e-17
     [1838,] 9.894317 0.00841948 -1.135e-16
     [1839,] 9.921633 0.00839632 -2.318e-17
     [1840,] 9.949025 0.00837322 4.748e-17
     [1841,] 9.976492 0.00835018 -6.795e-17
     [1842,] 1.000403e+01 0.00832721 3.842e-17
     [1843,] 1.003165e+01 0.00830430 4.107e-17
     [1844,] 1.005935e+01 0.00828145 9.206e-17
     [1845,] 1.008712e+01 0.00825866 -1.059e-16
     [1846,] 1.011497e+01 0.00823594 -5.163e-17
     [1847,] 1.014289e+01 0.00821328 -5.503e-17
     [1848,] 1.017090e+01 0.00819068 6.677e-17
     [1849,] 1.019897e+01 0.00816814 -1.815e-16
     [1850,] 1.022713e+01 0.00814567 7.084e-17
     [1851,] 1.025537e+01 0.00812326 -1.878e-17
     [1852,] 1.028368e+01 0.00810091 -5.638e-17
     [1853,] 1.031207e+01 0.00807862 6.926e-18
     [1854,] 1.034054e+01 0.00805639 -9.775e-17
     [1855,] 1.036909e+01 0.00803422 -5.051e-17
     [1856,] 1.039771e+01 0.00801212 -1.397e-16
     [1857,] 1.042642e+01 0.00799007 -1.683e-17
     [1858,] 1.045520e+01 0.00796809 8.494e-17
     [1859,] 1.048407e+01 0.00794616 -5.612e-17
     [1860,] 1.051301e+01 0.00792430 5.178e-17
     [1861,] 1.054204e+01 0.00790250 3.639e-17
     [1862,] 1.057114e+01 0.00788075 -1.239e-16
     [1863,] 1.060033e+01 0.00785907 -5.24e-17
     [1864,] 1.062959e+01 0.00783744 -1.61e-16
     [1865,] 1.065894e+01 0.00781588 -1.936e-16
     [1866,] 1.068836e+01 0.00779437 -1.577e-16
     [1867,] 1.071787e+01 0.00777292 2.622e-18
     [1868,] 1.074746e+01 0.00775154 -5.205e-17
     [1869,] 1.077713e+01 0.00773021 -1.411e-16
     [1870,] 1.080689e+01 0.00770894 -1.529e-16
     [1871,] 1.083672e+01 0.00768773 -5.368e-17
     [1872,] 1.086664e+01 0.00766657 -7.389e-17
     [1873,] 1.089664e+01 0.00764548 -1.113e-16
     [1874,] 1.092672e+01 0.00762444 -5.381e-17
     [1875,] 1.095689e+01 0.00760346 -8.969e-17
     [1876,] 1.098714e+01 0.00758254 -4.332e-17
     [1877,] 1.101747e+01 0.00756167 -3.428e-17
     [1878,] 1.104789e+01 0.00754086 1.961e-17
     [1879,] 1.107839e+01 0.00752011 -1.036e-16
     [1880,] 1.110897e+01 0.00749942 -6.48e-17
     [1881,] 1.113964e+01 0.00747879 -1.48e-16
     [1882,] 1.117040e+01 0.00745821 -1.848e-16
     [1883,] 1.120124e+01 0.00743768 -4.813e-17
     [1884,] 1.123216e+01 0.00741722 -1.039e-16
     [1885,] 1.126317e+01 0.00739681 -1.243e-16
     [1886,] 1.129426e+01 0.00737645 -1.41e-16
     [1887,] 1.132545e+01 0.00735615 -4.483e-17
     [1888,] 1.135671e+01 0.00733591 -3.847e-17
     [1889,] 1.138807e+01 0.00731573 -1.765e-16
     [1890,] 1.141951e+01 0.00729559 -5.919e-17
     [1891,] 1.145103e+01 0.00727552 -1.412e-16
     [1892,] 1.148265e+01 0.00725550 -1.079e-16
     [1893,] 1.151435e+01 0.00723553 -1.41e-16
     [1894,] 1.154614e+01 0.00721562 -1.136e-16
     [1895,] 1.157801e+01 0.00719577 -1.192e-16
     [1896,] 1.160998e+01 0.00717596 4.681e-17
     [1897,] 1.164203e+01 0.00715622 -1.651e-16
     [1898,] 1.167417e+01 0.00713652 -1.101e-16
     [1899,] 1.170640e+01 0.00711689 -8.113e-17
     [1900,] 1.173872e+01 0.00709730 -1.512e-16
     [1901,] 1.177113e+01 0.00707777 -1.474e-16
     [1902,] 1.180362e+01 0.00705829 -9.768e-17
     [1903,] 1.183621e+01 0.00703887 -7.933e-17
     [1904,] 1.186889e+01 0.00701950 3.457e-17
     [1905,] 1.190165e+01 0.00700018 1.787e-17
     [1906,] 1.193451e+01 0.00698092 3.691e-17
     [1907,] 1.196746e+01 0.00696171 -1.819e-17
     [1908,] 1.200050e+01 0.00694255 -1.1e-16
     [1909,] 1.203363e+01 0.00692345 2.361e-17
     [1910,] 1.206685e+01 0.00690439 4.718e-17
     [1911,] 1.210017e+01 0.00688539 -1.019e-16
     [1912,] 1.213357e+01 0.00686644 1.179e-16
     [1913,] 1.216707e+01 0.00684755 1.086e-16
     [1914,] 1.220066e+01 0.00682870 1.867e-16
     [1915,] 1.223434e+01 0.00680991 1.018e-16
     [1916,] 1.226812e+01 0.00679117 1.738e-16
     [1917,] 1.230199e+01 0.00677248 4.797e-17
     [1918,] 1.233595e+01 0.00675385 2.418e-17
     [1919,] 1.237001e+01 0.00673526 2.535e-17
     [1920,] 1.240416e+01 0.00671672 1.171e-16
     [1921,] 1.243841e+01 0.00669824 8.973e-17
     [1922,] 1.247274e+01 0.00667981 1.108e-16
     [1923,] 1.250718e+01 0.00666142 -2.753e-17
     [1924,] 1.254171e+01 0.00664309 1.31e-16
     [1925,] 1.257633e+01 0.00662481 3.372e-17
     [1926,] 1.261105e+01 0.00660658 8.811e-17
     [1927,] 1.264587e+01 0.00658840 1.354e-16
     [1928,] 1.268078e+01 0.00657026 1.844e-17
     [1929,] 1.271579e+01 0.00655218 1.096e-16
     [1930,] 1.275090e+01 0.00653415 8.427e-17
     [1931,] 1.278610e+01 0.00651617 8.817e-17
     [1932,] 1.282140e+01 0.00649824 4.359e-17
     [1933,] 1.285680e+01 0.00648035 7.854e-17
     [1934,] 1.289229e+01 0.00646252 3.333e-17
     [1935,] 1.292788e+01 0.00644473 5.688e-17
     [1936,] 1.296357e+01 0.00642700 1.234e-16
     [1937,] 1.299936e+01 0.00640931 7.49e-17
     [1938,] 1.303525e+01 0.00639167 9.276e-17
     [1939,] 1.307124e+01 0.00637408 5.967e-17
     [1940,] 1.310733e+01 0.00635654 -1.096e-16
     [1941,] 1.314351e+01 0.00633904 -1.116e-17
     [1942,] 1.317980e+01 0.00632160 6.359e-17
     [1943,] 1.321618e+01 0.00630420 -4.362e-18
     [1944,] 1.325267e+01 0.00628685 1.946e-17
     [1945,] 1.328926e+01 0.00626955 6.637e-17
     [1946,] 1.332595e+01 0.00625229 -5.855e-17
     [1947,] 1.336274e+01 0.00623508 5.636e-17
     [1948,] 1.339963e+01 0.00621793 -9.854e-17
     [1949,] 1.343662e+01 0.00620081 2.668e-17
     [1950,] 1.347372e+01 0.00618375 -1.729e-17
     [1951,] 1.351092e+01 0.00616673 -3.522e-17
     [1952,] 1.354822e+01 0.00614976 -2.041e-17
     [1953,] 1.358562e+01 0.00613283 1.176e-17
     [1954,] 1.362313e+01 0.00611595 -4.01e-17
     [1955,] 1.366074e+01 0.00609912 -8.449e-17
     [1956,] 1.369845e+01 0.00608233 6.346e-17
     [1957,] 1.373627e+01 0.00606559 1.837e-17
     [1958,] 1.377419e+01 0.00604890 -3.592e-17
     [1959,] 1.381222e+01 0.00603225 -8.856e-18
     [1960,] 1.385035e+01 0.00601565 -6.647e-17
     [1961,] 1.388859e+01 0.00599909 3.621e-18
     [1962,] 1.392693e+01 0.00598258 -6.722e-17
     [1963,] 1.396538e+01 0.00596612 -9.877e-17
     [1964,] 1.400394e+01 0.00594970 -2.662e-17
     [1965,] 1.404260e+01 0.00593332 2.319e-17
     [1966,] 1.408137e+01 0.00591699 -7.307e-17
     [1967,] 1.412024e+01 0.00590071 6.137e-17
     [1968,] 1.415922e+01 0.00588447 -3.574e-17
     [1969,] 1.419832e+01 0.00586827 -3.63e-17
     [1970,] 1.423751e+01 0.00585212 -5.372e-17
     [1971,] 1.427682e+01 0.00583601 -8.689e-17
     [1972,] 1.431624e+01 0.00581995 -4.634e-17
     [1973,] 1.435576e+01 0.00580393 -5.897e-17
     [1974,] 1.439539e+01 0.00578796 -7.167e-17
     [1975,] 1.443513e+01 0.00577203 6.173e-17
     [1976,] 1.447499e+01 0.00575614 -4.044e-17
     [1977,] 1.451495e+01 0.00574030 2.463e-17
     [1978,] 1.455502e+01 0.00572450 -6.677e-17
     [1979,] 1.459520e+01 0.00570875 -6.493e-17
     [1980,] 1.463550e+01 0.00569303 -3.427e-17
     [1981,] 1.467590e+01 0.00567736 -1.003e-17
     [1982,] 1.471642e+01 0.00566174 -5.983e-17
     [1983,] 1.475705e+01 0.00564616 2.222e-17
     [1984,] 1.479779e+01 0.00563062 2.28e-17
     [1985,] 1.483864e+01 0.00561512 -1.098e-16
     [1986,] 1.487961e+01 0.00559966 -7.868e-18
     [1987,] 1.492069e+01 0.00558425 -6.327e-17
     [1988,] 1.496188e+01 0.00556888 -1.04e-16
     [1989,] 1.500319e+01 0.00555355 2.548e-17
     [1990,] 1.504461e+01 0.00553827 -7.335e-17
     [1991,] 1.508614e+01 0.00552303 -1.296e-17
     [1992,] 1.512779e+01 0.00550782 -3.03e-17
     [1993,] 1.516956e+01 0.00549266 7.078e-17
     [1994,] 1.521144e+01 0.00547755 -4.144e-18
     [1995,] 1.525343e+01 0.00546247 1.816e-18
     [1996,] 1.529554e+01 0.00544744 3.829e-17
     [1997,] 1.533777e+01 0.00543244 -5.778e-17
     [1998,] 1.538011e+01 0.00541749 1.961e-17
     [1999,] 1.542257e+01 0.00540258 1.976e-17
     [2000,] 1.546515e+01 0.00538771 8.565e-17
     [2001,] 1.550785e+01 0.00537288 -5.308e-17
     [2002,] 1.555066e+01 0.00535809 -8.871e-17
     [2003,] 1.559359e+01 0.00534334 3.356e-17
     [2004,] 1.563664e+01 0.00532864 -1.687e-16
     [2005,] 1.567981e+01 0.00531397 -9.577e-18
     [2006,] 1.572310e+01 0.00529934 -4.947e-17
     [2007,] 1.576651e+01 0.00528476 -1.163e-16
     [2008,] 1.581004e+01 0.00527021 -2.078e-17
     [2009,] 1.585369e+01 0.00525570 4.32e-17
     [2010,] 1.589745e+01 0.00524124 1.276e-18
     [2011,] 1.594134e+01 0.00522681 8.286e-17
     [2012,] 1.598535e+01 0.00521243 4.246e-18
     [2013,] 1.602949e+01 0.00519808 -8.425e-17
     [2014,] 1.607374e+01 0.00518377 1.77e-17
     [2015,] 1.611812e+01 0.00516950 -1.656e-16
     [2016,] 1.616261e+01 0.00515527 4.461e-17
     [2017,] 1.620724e+01 0.00514108 -9.962e-17
     [2018,] 1.625198e+01 0.00512693 -6.854e-17
     [2019,] 1.629685e+01 0.00511282 -1.134e-16
     [2020,] 1.634184e+01 0.00509875 4.852e-17
     [2021,] 1.638696e+01 0.00508472 -5.987e-17
     [2022,] 1.643220e+01 0.00507072 -1.361e-16
     [2023,] 1.647756e+01 0.00505676 -5.319e-18
     [2024,] 1.652305e+01 0.00504284 -1.526e-17
     [2025,] 1.656867e+01 0.00502896 4.312e-17
     [2026,] 1.661441e+01 0.00501512 -8.638e-17
     [2027,] 1.666028e+01 0.00500132 -1.513e-16
     [2028,] 1.670628e+01 0.00498755 3.846e-17
     [2029,] 1.675240e+01 0.00497382 -9.375e-17
     [2030,] 1.679865e+01 0.00496013 5.155e-18
     [2031,] 1.684502e+01 0.00494648 -7.903e-17
     [2032,] 1.689153e+01 0.00493286 -6.641e-17
     [2033,] 1.693816e+01 0.00491929 -5.549e-17
     [2034,] 1.698493e+01 0.00490575 -2.278e-18
     [2035,] 1.703182e+01 0.00489224 3.901e-17
     [2036,] 1.707884e+01 0.00487878 -9.192e-17
     [2037,] 1.712599e+01 0.00486535 -4.879e-18
     [2038,] 1.717327e+01 0.00485195 9.207e-17
     [2039,] 1.722068e+01 0.00483860 -5.966e-17
     [2040,] 1.726822e+01 0.00482528 9.654e-17
     [2041,] 1.731590e+01 0.00481200 9.568e-17
     [2042,] 1.736370e+01 0.00479875 -1.056e-17
     [2043,] 1.741164e+01 0.00478554 -7.328e-18
     [2044,] 1.745971e+01 0.00477237 -9.762e-17
     [2045,] 1.750791e+01 0.00475924 -1.138e-17
     [2046,] 1.755625e+01 0.00474614 -1.058e-16
     [2047,] 1.760472e+01 0.00473307 -5.018e-17
     [2048,] 1.765332e+01 0.00472004 4.424e-17
     [2049,] 1.770205e+01 0.00470705 -6.861e-18
     [2050,] 1.775093e+01 0.00469409 -5.499e-17
     [2051,] 1.779993e+01 0.00468117 4.379e-17
     [2052,] 1.784907e+01 0.00466829 -8.447e-17
     [2053,] 1.789835e+01 0.00465544 4.407e-17
     [2054,] 1.794776e+01 0.00464262 1.823e-17
     [2055,] 1.799731e+01 0.00462984 -3.046e-17
     [2056,] 1.804700e+01 0.00461710 -7.409e-17
     [2057,] 1.809682e+01 0.00460439 -1.609e-17
     [2058,] 1.814679e+01 0.00459172 -3.871e-17
     [2059,] 1.819688e+01 0.00457908 -1.089e-16
     [2060,] 1.824712e+01 0.00456647 -5.247e-17
     [2061,] 1.829750e+01 0.00455390 5.46e-17
     [2062,] 1.834801e+01 0.00454137 -2.091e-16
     [2063,] 1.839867e+01 0.00452887 -2.247e-17
     [2064,] 1.844946e+01 0.00451640 -4.334e-17
     [2065,] 1.850040e+01 0.00450397 -4.428e-17
     [2066,] 1.855147e+01 0.00449157 -5.642e-17
     [2067,] 1.860269e+01 0.00447921 -7.311e-17
     [2068,] 1.865405e+01 0.00446688 -8.131e-18
     [2069,] 1.870555e+01 0.00445458 -1.434e-16
     [2070,] 1.875719e+01 0.00444232 -7.461e-17
     [2071,] 1.880897e+01 0.00443009 -9.759e-17
     [2072,] 1.886090e+01 0.00441790 -1.179e-16
     [2073,] 1.891297e+01 0.00440574 -4.526e-17
     [2074,] 1.896518e+01 0.00439361 2.184e-19
     [2075,] 1.901754e+01 0.00438152 5.326e-17
     [2076,] 1.907005e+01 0.00436945 -2.399e-17
     [2077,] 1.912269e+01 0.00435743 5.05e-17
     [2078,] 1.917549e+01 0.00434543 6.714e-17
     [2079,] 1.922843e+01 0.00433347 -2.294e-17
     [2080,] 1.928151e+01 0.00432154 -4.095e-17
     [2081,] 1.933474e+01 0.00430965 3.615e-18
     [2082,] 1.938812e+01 0.00429778 -4.997e-17
     [2083,] 1.944165e+01 0.00428595 1.603e-17
     [2084,] 1.949532e+01 0.00427415 -1.55e-16
     [2085,] 1.954914e+01 0.00426239 2.996e-18
     [2086,] 1.960312e+01 0.00425066 -1.804e-16
     [2087,] 1.965724e+01 0.00423896 -1.229e-16
     [2088,] 1.971150e+01 0.00422729 -6.969e-17
     [2089,] 1.976592e+01 0.00421565 -6.985e-17
     [2090,] 1.982049e+01 0.00420405 2.186e-17
     [2091,] 1.987521e+01 0.00419247 -1.474e-16
     [2092,] 1.993008e+01 0.00418093 -1.239e-16
     [2093,] 1.998511e+01 0.00416942 -1.582e-16
     [2094,] 2.004028e+01 0.00415795 -6.694e-17
     [2095,] 2.009561e+01 0.00414650 7.511e-17
     [2096,] 2.015109e+01 0.00413509 -6.268e-17
     [2097,] 2.020672e+01 0.00412370 1.875e-17
     [2098,] 2.026250e+01 0.00411235 -1.766e-17
     [2099,] 2.031844e+01 0.00410103 -5.18e-17
     [2100,] 2.037454e+01 0.00408974 -1.407e-16
     [2101,] 2.043079e+01 0.00407849 -1.125e-16
     [2102,] 2.048719e+01 0.00406726 5.148e-17
     [2103,] 2.054375e+01 0.00405606 4.047e-17
     [2104,] 2.060047e+01 0.00404490 -1.725e-16
     [2105,] 2.065734e+01 0.00403376 2.665e-17
     [2106,] 2.071437e+01 0.00402266 -1.389e-16
     [2107,] 2.077156e+01 0.00401159 -1.57e-17
     [2108,] 2.082891e+01 0.00400054 -6.89e-17
     [2109,] 2.088641e+01 0.00398953 -1.549e-16
     [2110,] 2.094407e+01 0.00397855 -1.169e-16
     [2111,] 2.100190e+01 0.00396760 -8.91e-17
     [2112,] 2.105988e+01 0.00395667 -1.527e-16
     [2113,] 2.111802e+01 0.00394578 5.34e-17
     [2114,] 2.117632e+01 0.00393492 -1.643e-16
     [2115,] 2.123478e+01 0.00392409 -4.449e-17
     [2116,] 2.129341e+01 0.00391329 -4.027e-17
     [2117,] 2.135219e+01 0.00390251 4.295e-17
     [2118,] 2.141114e+01 0.00389177 -8.417e-17
     [2119,] 2.147025e+01 0.00388106 -1.911e-16
     [2120,] 2.152953e+01 0.00387037 -9.326e-17
     [2121,] 2.158897e+01 0.00385972 -4.279e-17
     [2122,] 2.164857e+01 0.00384910 -4.157e-17
     [2123,] 2.170834e+01 0.00383850 -6.067e-17
     [2124,] 2.176827e+01 0.00382793 -8.553e-17
     [2125,] 2.182836e+01 0.00381740 -2.351e-17
     [2126,] 2.188863e+01 0.00380689 -9.314e-17
     [2127,] 2.194906e+01 0.00379641 -1.359e-16
     [2128,] 2.200965e+01 0.00378596 -4.672e-17
     [2129,] 2.207042e+01 0.00377554 -6.789e-17
     [2130,] 2.213135e+01 0.00376514 6.365e-17
     [2131,] 2.219245e+01 0.00375478 -2.138e-17
     [2132,] 2.225372e+01 0.00374444 -2.914e-17
     [2133,] 2.231515e+01 0.00373413 -6.994e-17
     [2134,] 2.237676e+01 0.00372385 -7.138e-17
     [2135,] 2.243854e+01 0.00371360 -1.166e-16
     [2136,] 2.250049e+01 0.00370338 4.907e-17
     [2137,] 2.256260e+01 0.00369319 -7.081e-17
     [2138,] 2.262489e+01 0.00368302 -3.132e-17
     [2139,] 2.268736e+01 0.00367288 -7.837e-17
     [2140,] 2.274999e+01 0.00366277 -9.555e-17
     [2141,] 2.281280e+01 0.00365269 -2.441e-17
     [2142,] 2.287578e+01 0.00364263 -4.813e-17
     [2143,] 2.293893e+01 0.00363260 -1.165e-16
     [2144,] 2.300226e+01 0.00362260 -1.018e-17
     [2145,] 2.306577e+01 0.00361263 3.425e-18
     [2146,] 2.312945e+01 0.00360269 -1.685e-16
     [2147,] 2.319330e+01 0.00359277 -1.099e-16
     [2148,] 2.325733e+01 0.00358288 -3.564e-18
     [2149,] 2.332154e+01 0.00357302 -4.508e-17
     [2150,] 2.338593e+01 0.00356318 2.835e-18
     [2151,] 2.345049e+01 0.00355337 4.677e-17
     [2152,] 2.351523e+01 0.00354359 4.844e-17
     [2153,] 2.358015e+01 0.00353383 -1.366e-16
     [2154,] 2.364525e+01 0.00352411 -8.592e-17
     [2155,] 2.371053e+01 0.00351440 -1.547e-16
     [2156,] 2.377599e+01 0.00350473 -1.053e-16
     [2157,] 2.384163e+01 0.00349508 -4.442e-17
     [2158,] 2.390745e+01 0.00348546 2.99e-18
     [2159,] 2.397345e+01 0.00347587 -1.129e-16
     [2160,] 2.403964e+01 0.00346630 -4.258e-17
     [2161,] 2.410601e+01 0.00345675 6.679e-18
     [2162,] 2.417256e+01 0.00344724 -2.349e-17
     [2163,] 2.423929e+01 0.00343775 2.775e-17
     [2164,] 2.430621e+01 0.00342829 -1.131e-16
     [2165,] 2.437332e+01 0.00341885 -5.189e-17
     [2166,] 2.444061e+01 0.00340944 -1.187e-16
     [2167,] 2.450808e+01 0.00340005 -1.377e-16
     [2168,] 2.457574e+01 0.00339069 -1.64e-19
     [2169,] 2.464359e+01 0.00338136 -8.768e-17
     [2170,] 2.471163e+01 0.00337205 -1.403e-17
     [2171,] 2.477985e+01 0.00336277 -2.984e-17
     [2172,] 2.484826e+01 0.00335351 -8.605e-17
     [2173,] 2.491686e+01 0.00334428 -9.324e-18
     [2174,] 2.498565e+01 0.00333507 -3.401e-17
     [2175,] 2.505463e+01 0.00332589 8.481e-18
     [2176,] 2.512380e+01 0.00331673 1.999e-17
     [2177,] 2.519316e+01 0.00330760 1.05e-18
     [2178,] 2.526271e+01 0.00329850 -2.739e-17
     [2179,] 2.533246e+01 0.00328942 -1.365e-16
     [2180,] 2.540239e+01 0.00328036 2.648e-17
     [2181,] 2.547253e+01 0.00327133 -4.905e-17
     [2182,] 2.554285e+01 0.00326233 2.933e-17
     [2183,] 2.561337e+01 0.00325334 -1.061e-16
     [2184,] 2.568408e+01 0.00324439 -2.654e-17
     [2185,] 2.575499e+01 0.00323546 -1.053e-16
     [2186,] 2.582609e+01 0.00322655 -8.629e-17
     [2187,] 2.589739e+01 0.00321767 -9.268e-17
     [2188,] 2.596889e+01 0.00320881 -8.183e-17
     [2189,] 2.604058e+01 0.00319998 1.218e-16
     [2190,] 2.611247e+01 0.00319117 6.462e-17
     [2191,] 2.618456e+01 0.00318238 2.518e-17
     [2192,] 2.625685e+01 0.00317362 1.648e-16
     [2193,] 2.632934e+01 0.00316488 2.768e-17
     [2194,] 2.640203e+01 0.00315617 4.795e-17
     [2195,] 2.647492e+01 0.00314748 -1.098e-17
     [2196,] 2.654801e+01 0.00313882 1.076e-16
     [2197,] 2.662131e+01 0.00313018 1.704e-17
     [2198,] 2.669480e+01 0.00312156 4.75e-17
     [2199,] 2.676850e+01 0.00311297 1.373e-17
     [2200,] 2.684240e+01 0.00310440 4.923e-17
     [2201,] 2.691651e+01 0.00309585 1.201e-16
     [2202,] 2.699082e+01 0.00308733 6.537e-17
     [2203,] 2.706533e+01 0.00307883 -7.665e-18
     [2204,] 2.714005e+01 0.00307035 5.204e-17
     [2205,] 2.721498e+01 0.00306190 1.153e-16
     [2206,] 2.729012e+01 0.00305347 4.451e-17
     [2207,] 2.736546e+01 0.00304507 6.581e-18
     [2208,] 2.744101e+01 0.00303668 4.644e-17
     [2209,] 2.751677e+01 0.00302832 1.103e-17
     [2210,] 2.759273e+01 0.00301999 -6.08e-18
     [2211,] 2.766891e+01 0.00301167 -8.728e-17
     [2212,] 2.774530e+01 0.00300338 1.481e-17
     [2213,] 2.782190e+01 0.00299511 2.168e-17
     [2214,] 2.789871e+01 0.00298687 3.874e-17
     [2215,] 2.797573e+01 0.00297865 -4.506e-17
     [2216,] 2.805296e+01 0.00297045 1.053e-16
     [2217,] 2.813041e+01 0.00296227 3.741e-17
     [2218,] 2.820807e+01 0.00295411 -5.342e-18
     [2219,] 2.828595e+01 0.00294598 -4.346e-17
     [2220,] 2.836404e+01 0.00293787 5.427e-17
     [2221,] 2.844235e+01 0.00292978 -5.033e-17
     [2222,] 2.852087e+01 0.00292172 -6.135e-17
     [2223,] 2.859961e+01 0.00291367 -1.614e-17
     [2224,] 2.867857e+01 0.00290565 5.261e-18
     [2225,] 2.875774e+01 0.00289765 -2.021e-17
     [2226,] 2.883713e+01 0.00288968 -5.45e-17
     [2227,] 2.891675e+01 0.00288172 1.151e-17
     [2228,] 2.899658e+01 0.00287379 9.315e-17
     [2229,] 2.907663e+01 0.00286588 -7.411e-17
     [2230,] 2.915691e+01 0.00285799 -2.017e-17
     [2231,] 2.923740e+01 0.00285012 -6.915e-17
     [2232,] 2.931812e+01 0.00284227 -2.813e-17
     [2233,] 2.939906e+01 0.00283445 -1.071e-16
     [2234,] 2.948023e+01 0.00282665 -3.233e-17
     [2235,] 2.956161e+01 0.00281886 -2.179e-17
     [2236,] 2.964323e+01 0.00281110 -1.217e-16
     [2237,] 2.972506e+01 0.00280336 -8.537e-18
     [2238,] 2.980713e+01 0.00279565 -4.305e-17
     [2239,] 2.988942e+01 0.00278795 -1.258e-16
     [2240,] 2.997194e+01 0.00278028 -3.687e-17
     [2241,] 3.005468e+01 0.00277262 -3.231e-17
     [2242,] 3.013766e+01 0.00276499 -3.671e-17
     [2243,] 3.022086e+01 0.00275738 -3.72e-17
     [2244,] 3.030429e+01 0.00274979 -6.451e-17
     [2245,] 3.038796e+01 0.00274222 -1.17e-17
     [2246,] 3.047185e+01 0.00273467 -8.929e-17
     [2247,] 3.055598e+01 0.00272714 -1.893e-17
     [2248,] 3.064033e+01 0.00271963 -1.015e-17
     [2249,] 3.072493e+01 0.00271214 3.771e-17
     [2250,] 3.080975e+01 0.00270468 -4.964e-17
     [2251,] 3.089481e+01 0.00269723 -8.525e-17
     [2252,] 3.098010e+01 0.00268981 -4.72e-17
     [2253,] 3.106563e+01 0.00268240 -7.534e-17
     [2254,] 3.115140e+01 0.00267502 -4.191e-17
     [2255,] 3.123740e+01 0.00266765 9.497e-17
     [2256,] 3.132364e+01 0.00266031 -2.907e-17
     [2257,] 3.141011e+01 0.00265298 -8.831e-17
     [2258,] 3.149683e+01 0.00264568 -2.764e-17
     [2259,] 3.158379e+01 0.00263840 7.611e-17
     [2260,] 3.167098e+01 0.00263113 7.766e-17
     [2261,] 3.175842e+01 0.00262389 3.568e-18
     [2262,] 3.184610e+01 0.00261667 3.795e-17
     [2263,] 3.193402e+01 0.00260946 -1.1e-17
     [2264,] 3.202218e+01 0.00260228 -8.342e-17
     [2265,] 3.211058e+01 0.00259511 2.524e-17
     [2266,] 3.219923e+01 0.00258797 -4.66e-17
     [2267,] 3.228813e+01 0.00258085 -1.36e-17
     [2268,] 3.237727e+01 0.00257374 -4.279e-17
     [2269,] 3.246666e+01 0.00256665 5.09e-17
     [2270,] 3.255629e+01 0.00255959 -7.992e-17
     [2271,] 3.264617e+01 0.00255254 2.909e-17
     [2272,] 3.273630e+01 0.00254552 -1.572e-16
     [2273,] 3.282667e+01 0.00253851 4.271e-17
     [2274,] 3.291730e+01 0.00253152 -2.854e-17
     [2275,] 3.300818e+01 0.00252455 5.583e-18
     [2276,] 3.309931e+01 0.00251760 -2.906e-17
     [2277,] 3.319069e+01 0.00251067 -4.839e-17
     [2278,] 3.328232e+01 0.00250376 -2.273e-17
     [2279,] 3.337420e+01 0.00249686 -4.306e-17
     [2280,] 3.346634e+01 0.00248999 3.861e-17
     [2281,] 3.355873e+01 0.00248313 -9.458e-17
     [2282,] 3.365138e+01 0.00247630 -2.456e-17
     [2283,] 3.374429e+01 0.00246948 -1.805e-16
     [2284,] 3.383745e+01 0.00246268 -8.978e-17
     [2285,] 3.393086e+01 0.00245590 -6.711e-17
     [2286,] 3.402454e+01 0.00244914 -9.753e-17
     [2287,] 3.411847e+01 0.00244240 -4.09e-18
     [2288,] 3.421267e+01 0.00243568 5.76e-17
     [2289,] 3.430712e+01 0.00242897 -2.455e-17
     [2290,] 3.440183e+01 0.00242228 -3.033e-17
     [2291,] 3.449681e+01 0.00241561 -7.576e-17
     [2292,] 3.459205e+01 0.00240896 -3.059e-17
     [2293,] 3.468755e+01 0.00240233 -4.707e-17
     [2294,] 3.478331e+01 0.00239572 3.708e-17
     [2295,] 3.487934e+01 0.00238912 -4.686e-17
     [2296,] 3.497564e+01 0.00238255 -1.862e-16
     [2297,] 3.507220e+01 0.00237599 -6.801e-17
     [2298,] 3.516902e+01 0.00236945 -7.62e-17
     [2299,] 3.526612e+01 0.00236292 -1.653e-16
     [2300,] 3.536348e+01 0.00235642 -5.476e-17
     [2301,] 3.546111e+01 0.00234993 -1.205e-16
     [2302,] 3.555901e+01 0.00234346 -1.45e-16
     [2303,] 3.565718e+01 0.00233701 2.021e-17
     [2304,] 3.575562e+01 0.00233058 -4.427e-17
     [2305,] 3.585433e+01 0.00232416 -9.023e-17
     [2306,] 3.595332e+01 0.00231776 -5.832e-17
     [2307,] 3.605258e+01 0.00231138 5.376e-17
     [2308,] 3.615211e+01 0.00230502 -7.402e-17
     [2309,] 3.625192e+01 0.00229867 -9.507e-17
     [2310,] 3.635200e+01 0.00229234 -8.045e-19
     [2311,] 3.645236e+01 0.00228603 -4.437e-17
     [2312,] 3.655300e+01 0.00227974 -1.325e-16
     [2313,] 3.665391e+01 0.00227346 -6.386e-17
     [2314,] 3.675510e+01 0.00226720 -9.045e-17
     [2315,] 3.685658e+01 0.00226096 -4.852e-17
     [2316,] 3.695833e+01 0.00225474 -9.879e-17
     [2317,] 3.706036e+01 0.00224853 -5.745e-17
     [2318,] 3.716268e+01 0.00224234 3.559e-17
     [2319,] 3.726528e+01 0.00223617 5.349e-18
     [2320,] 3.736816e+01 0.00223001 -7.775e-17
     [2321,] 3.747132e+01 0.00222387 -1.1e-17
     [2322,] 3.757477e+01 0.00221775 -5.865e-17
     [2323,] 3.767851e+01 0.00221164 9.688e-17
     [2324,] 3.778253e+01 0.00220555 -4.933e-17
     [2325,] 3.788684e+01 0.00219948 1.212e-17
     [2326,] 3.799143e+01 0.00219343 -2.15e-17
     [2327,] 3.809632e+01 0.00218739 -1.773e-17
     [2328,] 3.820149e+01 0.00218137 -8.213e-17
     [2329,] 3.830696e+01 0.00217536 -2.469e-17
     [2330,] 3.841272e+01 0.00216937 -7.347e-17
     [2331,] 3.851877e+01 0.00216340 4.199e-17
     [2332,] 3.862511e+01 0.00215744 8.965e-17
     [2333,] 3.873174e+01 0.00215150 -1.064e-16
     [2334,] 3.883867e+01 0.00214558 -6.232e-17
     [2335,] 3.894590e+01 0.00213967 2.863e-17
     [2336,] 3.905342e+01 0.00213378 -1.534e-17
     [2337,] 3.916124e+01 0.00212791 -3.466e-17
     [2338,] 3.926935e+01 0.00212205 3.321e-17
     [2339,] 3.937776e+01 0.00211621 3.2e-17
     [2340,] 3.948648e+01 0.00211038 -1.554e-16
     [2341,] 3.959549e+01 0.00210457 -9.186e-17
     [2342,] 3.970480e+01 0.00209878 -3.003e-18
     [2343,] 3.981442e+01 0.00209300 -4.888e-17
     [2344,] 3.992434e+01 0.00208724 -1.911e-16
     [2345,] 4.003456e+01 0.00208149 3.572e-18
     [2346,] 4.014509e+01 0.00207576 1.978e-17
     [2347,] 4.025592e+01 0.00207005 -1.718e-16
     [2348,] 4.036706e+01 0.00206435 -1.85e-16
     [2349,] 4.047850e+01 0.00205866 -6.535e-17
     [2350,] 4.059025e+01 0.00205300 7.443e-17
     [2351,] 4.070231e+01 0.00204734 -6.399e-17
     [2352,] 4.081468e+01 0.00204171 -1.907e-16
     [2353,] 4.092736e+01 0.00203609 -5.896e-17
     [2354,] 4.104035e+01 0.00203048 -8.96e-17
     [2355,] 4.115366e+01 0.00202489 1.891e-17
     [2356,] 4.126727e+01 0.00201932 -1.18e-16
     [2357,] 4.138120e+01 0.00201376 8.747e-17
     [2358,] 4.149545e+01 0.00200821 -9.397e-17
     [2359,] 4.161001e+01 0.00200268 -1.249e-16
     [2360,] 4.172488e+01 0.00199717 -8.298e-17
     [2361,] 4.184007e+01 0.00199167 -4.828e-17
     [2362,] 4.195558e+01 0.00198619 -1.513e-16
     [2363,] 4.207141e+01 0.00198072 -1.104e-16
     [2364,] 4.218756e+01 0.00197527 -8.707e-17
     [2365,] 4.230403e+01 0.00196983 -1.637e-16
     [2366,] 4.242083e+01 0.00196441 4.353e-19
     [2367,] 4.253794e+01 0.00195900 -4.531e-17
     [2368,] 4.265538e+01 0.00195361 -1.151e-16
     [2369,] 4.277314e+01 0.00194823 -7.655e-17
     [2370,] 4.289123e+01 0.00194286 -1.004e-16
     [2371,] 4.300964e+01 0.00193752 -5.017e-17
     [2372,] 4.312838e+01 0.00193218 -2.767e-17
     [2373,] 4.324745e+01 0.00192686 -8.31e-17
     [2374,] 4.336684e+01 0.00192156 -2.787e-17
     [2375,] 4.348657e+01 0.00191627 -8.455e-17
     [2376,] 4.360663e+01 0.00191099 -1.119e-16
     [2377,] 4.372701e+01 0.00190573 -4.032e-19
     [2378,] 4.384773e+01 0.00190048 -6.838e-17
     [2379,] 4.396879e+01 0.00189525 -5.94e-17
     [2380,] 4.409017e+01 0.00189003 -2.72e-17
     [2381,] 4.421190e+01 0.00188483 -6.983e-17
     [2382,] 4.433396e+01 0.00187964 -8.976e-17
     [2383,] 4.445635e+01 0.00187447 2.921e-17
     [2384,] 4.457909e+01 0.00186931 4.081e-17
     [2385,] 4.470216e+01 0.00186416 -5.437e-17
     [2386,] 4.482557e+01 0.00185903 -2.424e-17
     [2387,] 4.494932e+01 0.00185391 -3.072e-17
     [2388,] 4.507342e+01 0.00184881 -1.505e-16
     [2389,] 4.519786e+01 0.00184372 -1.201e-16
     [2390,] 4.532264e+01 0.00183864 2.256e-17
     [2391,] 4.544776e+01 0.00183358 -5.134e-18
     [2392,] 4.557323e+01 0.00182853 -1.244e-17
     [2393,] 4.569905e+01 0.00182350 -1.71e-16
     [2394,] 4.582522e+01 0.00181848 6.132e-18
     [2395,] 4.595173e+01 0.00181347 3.018e-17
     [2396,] 4.607859e+01 0.00180848 6.678e-18
     [2397,] 4.620580e+01 0.00180350 1.537e-17
     [2398,] 4.633337e+01 0.00179853 -9.952e-17
     [2399,] 4.646128e+01 0.00179358 -7.682e-17
     [2400,] 4.658955e+01 0.00178864 -6.646e-18
     [2401,] 4.671818e+01 0.00178372 -1.478e-17
     [2402,] 4.684715e+01 0.00177881 -6.126e-17
     [2403,] 4.697649e+01 0.00177391 -1.357e-16
     [2404,] 4.710618e+01 0.00176903 -7.605e-17
     [2405,] 4.723623e+01 0.00176416 -2.897e-17
     [2406,] 4.736664e+01 0.00175930 -1.203e-16
     [2407,] 4.749741e+01 0.00175446 1.618e-17
     [2408,] 4.762853e+01 0.00174963 2.009e-17
     [2409,] 4.776003e+01 0.00174481 -5.898e-17
     [2410,] 4.789188e+01 0.00174001 -9.236e-17
     [2411,] 4.802410e+01 0.00173521 -3.045e-17
     [2412,] 4.815668e+01 0.00173044 -7.709e-17
     [2413,] 4.828963e+01 0.00172567 -1.043e-16
     [2414,] 4.842295e+01 0.00172092 1.08e-17
     [2415,] 4.855663e+01 0.00171618 -1.095e-16
     [2416,] 4.869069e+01 0.00171146 -3.981e-17
     [2417,] 4.882511e+01 0.00170675 -1.384e-17
     [2418,] 4.895991e+01 0.00170205 -3.016e-17
     [2419,] 4.909507e+01 0.00169736 6.357e-18
     [2420,] 4.923061e+01 0.00169269 -1.772e-17
     [2421,] 4.936653e+01 0.00168803 -6.412e-17
     [2422,] 4.950282e+01 0.00168338 -1.565e-16
     [2423,] 4.963948e+01 0.00167875 -1.499e-16
     [2424,] 4.977653e+01 0.00167413 -3.524e-17
     [2425,] 4.991395e+01 0.00166952 -6.126e-17
     [2426,] 5.005175e+01 0.00166492 -2.565e-17
     [2427,] 5.018993e+01 0.00166034 -6.734e-18
     [2428,] 5.032849e+01 0.00165577 -9.125e-18
     [2429,] 5.046744e+01 0.00165121 -9.465e-17
     [2430,] 5.060677e+01 0.00164666 -2.722e-17
     [2431,] 5.074648e+01 0.00164213 -1.978e-18
     [2432,] 5.088658e+01 0.00163761 -1.419e-16
     [2433,] 5.102707e+01 0.00163310 -1.021e-16
     [2434,] 5.116794e+01 0.00162860 -2.513e-17
     [2435,] 5.130921e+01 0.00162412 -1.15e-16
     [2436,] 5.145086e+01 0.00161965 -2.368e-17
     [2437,] 5.159290e+01 0.00161519 -9.784e-17
     [2438,] 5.173534e+01 0.00161074 -6.706e-17
     [2439,] 5.187817e+01 0.00160631 -4.417e-17
     [2440,] 5.202139e+01 0.00160189 -1.122e-16
     [2441,] 5.216501e+01 0.00159748 3.796e-17
     [2442,] 5.230903e+01 0.00159308 -7.913e-17
     [2443,] 5.245344e+01 0.00158869 -9.077e-18
     [2444,] 5.259825e+01 0.00158432 -7.269e-17
     [2445,] 5.274346e+01 0.00157996 -1.421e-17
     [2446,] 5.288908e+01 0.00157561 -2.367e-17
     [2447,] 5.303509e+01 0.00157127 -1.758e-16
     [2448,] 5.318151e+01 0.00156694 -6.769e-17
     [2449,] 5.332833e+01 0.00156263 -1.722e-16
     [2450,] 5.347556e+01 0.00155833 7.498e-17
     [2451,] 5.362319e+01 0.00155404 -3.945e-17
     [2452,] 5.377123e+01 0.00154976 -9.756e-18
     [2453,] 5.391968e+01 0.00154549 -8.281e-17
     [2454,] 5.406854e+01 0.00154124 -8.597e-17
     [2455,] 5.421781e+01 0.00153699 -1.09e-16
     [2456,] 5.436750e+01 0.00153276 -4.582e-18
     [2457,] 5.451759e+01 0.00152854 -1.021e-16
     [2458,] 5.466810e+01 0.00152433 -7.157e-17
     [2459,] 5.481903e+01 0.00152014 -1.763e-16
     [2460,] 5.497037e+01 0.00151595 -5.541e-17
     [2461,] 5.512213e+01 0.00151178 -6.663e-17
     [2462,] 5.527431e+01 0.00150762 -1.28e-16
     [2463,] 5.542691e+01 0.00150347 -4.432e-17
     [2464,] 5.557993e+01 0.00149933 -8.591e-17
     [2465,] 5.573338e+01 0.00149520 -9.39e-17
     [2466,] 5.588724e+01 0.00149108 6.8e-18
     [2467,] 5.604154e+01 0.00148698 -1.606e-16
     [2468,] 5.619625e+01 0.00148288 -7.411e-17
     [2469,] 5.635140e+01 0.00147880 -1.018e-16
     [2470,] 5.650697e+01 0.00147473 -1.198e-16
     [2471,] 5.666298e+01 0.00147067 -4.874e-17
     [2472,] 5.681941e+01 0.00146662 -4.136e-17
     [2473,] 5.697627e+01 0.00146258 4.423e-17
     [2474,] 5.713357e+01 0.00145856 -1.061e-16
     [2475,] 5.729131e+01 0.00145454 2.551e-17
     [2476,] 5.744947e+01 0.00145054 -2.954e-17
     [2477,] 5.760808e+01 0.00144654 -1.784e-17
     [2478,] 5.776712e+01 0.00144256 -8.087e-18
     [2479,] 5.792660e+01 0.00143859 -5.726e-17
     [2480,] 5.808653e+01 0.00143463 -6.917e-17
     [2481,] 5.824689e+01 0.00143068 -8.043e-17
     [2482,] 5.840770e+01 0.00142674 -7.601e-17
     [2483,] 5.856895e+01 0.00142281 -8.705e-17
     [2484,] 5.873064e+01 0.00141889 -7.624e-17
     [2485,] 5.889278e+01 0.00141499 -8.717e-17
     [2486,] 5.905537e+01 0.00141109 -2.138e-17
     [2487,] 5.921841e+01 0.00140721 -1.161e-16
     [2488,] 5.938190e+01 0.00140333 -5.984e-17
     [2489,] 5.954584e+01 0.00139947 -1.076e-16
     [2490,] 5.971023e+01 0.00139562 1.199e-17
     [2491,] 5.987508e+01 0.00139177 -8.337e-17
     [2492,] 6.004038e+01 0.00138794 -1.215e-16
     [2493,] 6.020614e+01 0.00138412 -1.107e-16
     [2494,] 6.037235e+01 0.00138031 -6.273e-17
     [2495,] 6.053903e+01 0.00137651 -1.025e-16
     [2496,] 6.070616e+01 0.00137272 -8.781e-17
     [2497,] 6.087376e+01 0.00136894 -2.162e-16
     [2498,] 6.104182e+01 0.00136517 -1.937e-16
     [2499,] 6.121034e+01 0.00136141 -1.112e-16
     [2500,] 6.137933e+01 0.00135767 -9.92e-17
     [2501,] 6.154878e+01 0.00135393 -1.248e-16
     [2502,] 6.171870e+01 0.00135020 -1.197e-16
     [2503,] 6.188909e+01 0.00134648 -4.504e-17
     [2504,] 6.205995e+01 0.00134278 -1.574e-16
     [2505,] 6.223129e+01 0.00133908 -6.589e-17
     [2506,] 6.240309e+01 0.00133539 -1.619e-17
     [2507,] 6.257538e+01 0.00133172 -1.851e-16
     [2508,] 6.274813e+01 0.00132805 -6.744e-17
     [2509,] 6.292136e+01 0.00132439 -7.622e-17
     [2510,] 6.309508e+01 0.00132075 -9.096e-17
     [2511,] 6.326927e+01 0.00131711 -6.324e-17
     [2512,] 6.344394e+01 0.00131348 8.711e-18
     [2513,] 6.361909e+01 0.00130987 -7.898e-17
     [2514,] 6.379473e+01 0.00130626 -1.347e-16
     [2515,] 6.397085e+01 0.00130267 -1.48e-16
     [2516,] 6.414746e+01 0.00129908 -9.313e-17
     [2517,] 6.432456e+01 0.00129550 -5.179e-17
     [2518,] 6.450214e+01 0.00129194 1.336e-17
     [2519,] 6.468022e+01 0.00128838 4.968e-17
     [2520,] 6.485879e+01 0.00128483 -1.077e-16
     [2521,] 6.503785e+01 0.00128130 -9.032e-17
     [2522,] 6.521740e+01 0.00127777 -1.58e-16
     [2523,] 6.539745e+01 0.00127425 1.465e-17
     [2524,] 6.557800e+01 0.00127074 -7.414e-17
     [2525,] 6.575905e+01 0.00126724 -3.063e-17
     [2526,] 6.594059e+01 0.00126375 -6.296e-17
     [2527,] 6.612264e+01 0.00126027 -3.085e-17
     [2528,] 6.630519e+01 0.00125681 -8.174e-17
     [2529,] 6.648824e+01 0.00125334 -1.091e-16
     [2530,] 6.667180e+01 0.00124989 -2.357e-19
     [2531,] 6.685587e+01 0.00124645 -1.033e-16
     [2532,] 6.704044e+01 0.00124302 -1.829e-16
     [2533,] 6.722552e+01 0.00123960 4.084e-17
     [2534,] 6.741112e+01 0.00123619 -7.832e-17
     [2535,] 6.759722e+01 0.00123278 -4.176e-17
     [2536,] 6.778384e+01 0.00122939 -1.215e-16
     [2537,] 6.797098e+01 0.00122600 -9.598e-17
     [2538,] 6.815863e+01 0.00122263 1.993e-19
     [2539,] 6.834680e+01 0.00121926 -4.979e-17
     [2540,] 6.853549e+01 0.00121591 -1.711e-16
     [2541,] 6.872470e+01 0.00121256 -1.507e-16
     [2542,] 6.891444e+01 0.00120922 -1.96e-16
     [2543,] 6.910469e+01 0.00120589 -7.351e-17
     [2544,] 6.929548e+01 0.00120257 -1.578e-16
     [2545,] 6.948679e+01 0.00119926 -3.458e-17
     [2546,] 6.967862e+01 0.00119596 -9.993e-17
     [2547,] 6.987099e+01 0.00119267 -3.157e-17
     [2548,] 7.006389e+01 0.00118938 -8.629e-17
     [2549,] 7.025732e+01 0.00118611 -1.489e-16
     [2550,] 7.045128e+01 0.00118284 -1.452e-16
     [2551,] 7.064578e+01 0.00117959 -3.283e-17
     [2552,] 7.084082e+01 0.00117634 -4.514e-18
     [2553,] 7.103639e+01 0.00117310 -3.56e-17
     [2554,] 7.123251e+01 0.00116987 -6.767e-17
     [2555,] 7.142917e+01 0.00116665 -6.424e-17
     [2556,] 7.162637e+01 0.00116344 -1.336e-16
     [2557,] 7.182411e+01 0.00116023 -5.933e-17
     [2558,] 7.202240e+01 0.00115704 -5.118e-17
     [2559,] 7.222124e+01 0.00115385 -4.921e-17
     [2560,] 7.242062e+01 0.00115068 -1.151e-16
     [2561,] 7.262056e+01 0.00114751 -8.463e-17
     [2562,] 7.282105e+01 0.00114435 1.74e-17
     [2563,] 7.302209e+01 0.00114120 -1.083e-16
     [2564,] 7.322369e+01 0.00113806 -1.457e-16
     [2565,] 7.342584e+01 0.00113492 -1.799e-16
     [2566,] 7.362855e+01 0.00113180 -5.769e-17
     [2567,] 7.383183e+01 0.00112868 -2.196e-16
     [2568,] 7.403566e+01 0.00112558 5.906e-17
     [2569,] 7.424005e+01 0.00112248 -9.709e-17
     [2570,] 7.444501e+01 0.00111939 -8.358e-17
     [2571,] 7.465054e+01 0.00111631 -2.377e-17
     [2572,] 7.485663e+01 0.00111323 -3.194e-17
     [2573,] 7.506329e+01 0.00111017 -1.157e-16
     [2574,] 7.527053e+01 0.00110711 -3.932e-17
     [2575,] 7.547833e+01 0.00110406 -5.101e-17
     [2576,] 7.568671e+01 0.00110102 3.854e-17
     [2577,] 7.589566e+01 0.00109799 3.887e-18
     [2578,] 7.610519e+01 0.00109497 -9.477e-17
     [2579,] 7.631530e+01 0.00109195 -1.16e-16
     [2580,] 7.652599e+01 0.00108895 6.889e-17
     [2581,] 7.673726e+01 0.00108595 5.029e-17
     [2582,] 7.694912e+01 0.00108296 -6.646e-17
     [2583,] 7.716156e+01 0.00107998 -3.86e-17
     [2584,] 7.737458e+01 0.00107701 -1.645e-16
     [2585,] 7.758820e+01 0.00107404 -4.76e-17
     [2586,] 7.780240e+01 0.00107108 -1.327e-17
     [2587,] 7.801719e+01 0.00106813 -7.021e-18
     [2588,] 7.823258e+01 0.00106519 -3.111e-17
     [2589,] 7.844856e+01 0.00106226 2.606e-17
     [2590,] 7.866514e+01 0.00105934 -1.428e-16
     [2591,] 7.888232e+01 0.00105642 -1.7e-16
     [2592,] 7.910009e+01 0.00105351 -8.365e-17
     [2593,] 7.931847e+01 0.00105061 -2.792e-17
     [2594,] 7.953745e+01 0.00104772 -3.438e-17
     [2595,] 7.975704e+01 0.00104483 2.246e-17
     [2596,] 7.997723e+01 0.00104196 -4.014e-17
     [2597,] 8.019803e+01 0.00103909 -1.003e-16
     [2598,] 8.041944e+01 0.00103623 -4.984e-17
     [2599,] 8.064145e+01 0.00103338 -8.331e-17
     [2600,] 8.086409e+01 0.00103053 1.194e-16
     [2601,] 8.108733e+01 0.00102769 -3.585e-17
     [2602,] 8.131120e+01 0.00102486 -1.683e-16
     [2603,] 8.153568e+01 0.00102204 -1.14e-16
     [2604,] 8.176078e+01 0.00101923 -6.176e-17
     [2605,] 8.198650e+01 0.00101642 9.247e-18
     [2606,] 8.221285e+01 0.00101362 -2.085e-16
     [2607,] 8.243982e+01 0.00101083 -3.681e-17
     [2608,] 8.266742e+01 0.00100805 5.259e-17
     [2609,] 8.289564e+01 0.00100528 -2.475e-17
     [2610,] 8.312450e+01 0.00100251 -2.181e-16
     [2611,] 8.335399e+01 0.00099975 -1.843e-17
     [2612,] 8.358411e+01 0.00099699 -1.004e-16
     [2613,] 8.381487e+01 0.00099425 -2.083e-16
     [2614,] 8.404626e+01 0.00099151 -9.413e-17
     [2615,] 8.427829e+01 0.00098878 -1.929e-16
     [2616,] 8.451097e+01 0.00098606 -1.303e-16
     [2617,] 8.474428e+01 0.00098335 -1.277e-16
     [2618,] 8.497824e+01 0.00098064 -5.961e-17
     [2619,] 8.521285e+01 0.00097794 1.136e-17
     [2620,] 8.544810e+01 0.00097525 -1.859e-16
     [2621,] 8.568400e+01 0.00097256 -8.983e-17
     [2622,] 8.592056e+01 0.00096988 3.307e-17
     [2623,] 8.615776e+01 0.00096721 -2.056e-17
     [2624,] 8.639562e+01 0.00096455 -1.618e-17
     [2625,] 8.663414e+01 0.00096190 -1.089e-16
     [2626,] 8.687332e+01 0.00095925 -3.315e-17
     [2627,] 8.711316e+01 0.00095661 1.158e-17
     [2628,] 8.735366e+01 0.00095397 -8.414e-17
     [2629,] 8.759482e+01 0.00095135 -1.651e-16
     [2630,] 8.783665e+01 0.00094873 -3.643e-17
     [2631,] 8.807915e+01 0.00094611 -1.336e-16
     [2632,] 8.832231e+01 0.00094351 2.634e-18
     [2633,] 8.856615e+01 0.00094091 3.891e-17
     [2634,] 8.881066e+01 0.00093832 -5.897e-17
     [2635,] 8.905585e+01 0.00093574 -3.207e-17
     [2636,] 8.930171e+01 0.00093316 -2.391e-17
     [2637,] 8.954825e+01 0.00093059 -5.667e-19
     [2638,] 8.979547e+01 0.00092803 -2.629e-17
     [2639,] 9.004338e+01 0.00092548 6.934e-17
     [2640,] 9.029197e+01 0.00092293 -1.506e-16
     [2641,] 9.054124e+01 0.00092039 -7.801e-18
     [2642,] 9.079121e+01 0.00091785 -1.101e-16
     [2643,] 9.104186e+01 0.00091533 -6.669e-17
     [2644,] 9.129321e+01 0.00091281 -1.501e-17
     [2645,] 9.154525e+01 0.00091029 -1.294e-16
     [2646,] 9.179798e+01 0.00090779 -5.816e-17
     [2647,] 9.205142e+01 0.00090529 -5.194e-17
     [2648,] 9.230555e+01 0.00090280 -1.485e-17
     [2649,] 9.256038e+01 0.00090031 -8.174e-17
     [2650,] 9.281592e+01 0.00089783 -9.19e-17
     [2651,] 9.307216e+01 0.00089536 -1.304e-16
     [2652,] 9.332912e+01 0.00089289 -4.645e-17
     [2653,] 9.358678e+01 0.00089044 -1.207e-16
     [2654,] 9.384515e+01 0.00088798 -2.21e-17
     [2655,] 9.410423e+01 0.00088554 7.618e-17
     [2656,] 9.436403e+01 0.00088310 -1.856e-16
     [2657,] 9.462455e+01 0.00088067 -1.01e-16
     [2658,] 9.488579e+01 0.00087825 -1.361e-17
     [2659,] 9.514774e+01 0.00087583 -1.054e-16
     [2660,] 9.541043e+01 0.00087342 -3.148e-17
     [2661,] 9.567383e+01 0.00087101 -1.377e-16
     [2662,] 9.593797e+01 0.00086861 -9.112e-17
     [2663,] 9.620283e+01 0.00086622 -1.463e-16
     [2664,] 9.646842e+01 0.00086384 -3.444e-17
     [2665,] 9.673475e+01 0.00086146 -5.47e-17
     [2666,] 9.700181e+01 0.00085909 -7.313e-17
     [2667,] 9.726961e+01 0.00085672 -1.033e-16
     [2668,] 9.753815e+01 0.00085436 -1.161e-16
     [2669,] 9.780743e+01 0.00085201 4.357e-17
     [2670,] 9.807746e+01 0.00084967 -1.387e-16
     [2671,] 9.834823e+01 0.00084733 -9.871e-17
     [2672,] 9.861974e+01 0.00084499 -5.674e-17
     [2673,] 9.889201e+01 0.00084267 -6.223e-17
     [2674,] 9.916503e+01 0.00084035 -4.337e-17
     [2675,] 9.943880e+01 0.00083803 -4.542e-17
     [2676,] 9.971333e+01 0.00083573 3.655e-17
     [2677,] 9.998861e+01 0.00083343 -4.244e-17
     [2678,] 1.002647e+02 0.00083113 -1.045e-16
     [2679,] 1.005415e+02 0.00082884 -4.965e-17
     [2680,] 1.008190e+02 0.00082656 -4.1e-17
     [2681,] 1.010974e+02 0.00082429 -1.406e-16
     [2682,] 1.013765e+02 0.00082202 -1.046e-16
     [2683,] 1.016564e+02 0.00081975 -4.848e-18
     [2684,] 1.019370e+02 0.00081750 -2.541e-17
     [2685,] 1.022184e+02 0.00081524 -5.97e-17
     [2686,] 1.025006e+02 0.00081300 -1.07e-16
     [2687,] 1.027836e+02 0.00081076 -7.371e-18
     [2688,] 1.030674e+02 0.00080853 4.23e-17
     [2689,] 1.033519e+02 0.00080630 2.649e-17
     [2690,] 1.036373e+02 0.00080408 8.442e-18
     [2691,] 1.039234e+02 0.00080187 3.406e-17
     [2692,] 1.042103e+02 0.00079966 3.193e-18
     [2693,] 1.044980e+02 0.00079746 2.573e-17
     [2694,] 1.047865e+02 0.00079527 2.149e-17
     [2695,] 1.050758e+02 0.00079308 -1.885e-16
     [2696,] 1.053659e+02 0.00079089 -3.229e-17
     [2697,] 1.056568e+02 0.00078872 -1.354e-16
     [2698,] 1.059484e+02 0.00078654 4.75e-17
     [2699,] 1.062409e+02 0.00078438 2.444e-17
     [2700,] 1.065343e+02 0.00078222 -4.53e-17
     [2701,] 1.068284e+02 0.00078007 -8.443e-17
     [2702,] 1.071233e+02 0.00077792 6.564e-17
     [2703,] 1.074190e+02 0.00077578 -6.89e-18
     [2704,] 1.077156e+02 0.00077364 -1.185e-16
     [2705,] 1.080130e+02 0.00077151 -7.593e-17
     [2706,] 1.083112e+02 0.00076939 -1.238e-16
     [2707,] 1.086102e+02 0.00076727 -4.686e-18
     [2708,] 1.089100e+02 0.00076516 -1.525e-16
     [2709,] 1.092107e+02 0.00076305 -7.897e-17
     [2710,] 1.095122e+02 0.00076095 -9.176e-17
     [2711,] 1.098146e+02 0.00075885 3.402e-17
     [2712,] 1.101177e+02 0.00075676 -1.041e-16
     [2713,] 1.104218e+02 0.00075468 3.551e-18
     [2714,] 1.107266e+02 0.00075260 -3.462e-17
     [2715,] 1.110323e+02 0.00075053 -1.103e-16
     [2716,] 1.113388e+02 0.00074846 -1.188e-16
     [2717,] 1.116462e+02 0.00074640 -8.411e-17
     [2718,] 1.119544e+02 0.00074435 -1.47e-16
     [2719,] 1.122635e+02 0.00074230 -5.063e-17
     [2720,] 1.125735e+02 0.00074026 3.939e-17
     [2721,] 1.128842e+02 0.00073822 -9.441e-17
     [2722,] 1.131959e+02 0.00073619 -4.98e-17
     [2723,] 1.135084e+02 0.00073416 -3.472e-17
     [2724,] 1.138218e+02 0.00073214 -3.953e-17
     [2725,] 1.141360e+02 0.00073012 -8.064e-17
     [2726,] 1.144511e+02 0.00072811 -7.469e-17
     [2727,] 1.147671e+02 0.00072611 -3.313e-17
     [2728,] 1.150839e+02 0.00072411 -6.93e-17
     [2729,] 1.154016e+02 0.00072211 5.692e-17
     [2730,] 1.157202e+02 0.00072013 -8.403e-17
     [2731,] 1.160397e+02 0.00071814 2.573e-17
     [2732,] 1.163601e+02 0.00071617 9.644e-18
     [2733,] 1.166813e+02 0.00071419 -1.078e-16
     [2734,] 1.170035e+02 0.00071223 7.319e-17
     [2735,] 1.173265e+02 0.00071027 -3.375e-17
     [2736,] 1.176504e+02 0.00070831 -1.053e-16
     [2737,] 1.179752e+02 0.00070636 1.19e-17
     [2738,] 1.183009e+02 0.00070442 -1.041e-16
     [2739,] 1.186275e+02 0.00070248 3.292e-17
     [2740,] 1.189550e+02 0.00070054 -4.631e-17
     [2741,] 1.192834e+02 0.00069861 -1.676e-17
     [2742,] 1.196127e+02 0.00069669 -8.621e-17
     [2743,] 1.199429e+02 0.00069477 -6.539e-17
     [2744,] 1.202741e+02 0.00069286 6.118e-17
     [2745,] 1.206061e+02 0.00069095 -8.833e-17
     [2746,] 1.209391e+02 0.00068905 -1.095e-16
     [2747,] 1.212730e+02 0.00068715 -1.846e-16
     [2748,] 1.216078e+02 0.00068526 -3.352e-18
     [2749,] 1.219435e+02 0.00068337 -6.395e-17
     [2750,] 1.222802e+02 0.00068149 -1.311e-16
     [2751,] 1.226178e+02 0.00067962 -1.377e-16
     [2752,] 1.229563e+02 0.00067775 -1.367e-16
     [2753,] 1.232957e+02 0.00067588 -3.297e-17
     [2754,] 1.236361e+02 0.00067402 1.641e-17
     [2755,] 1.239775e+02 0.00067216 -7.607e-18
     [2756,] 1.243197e+02 0.00067031 -1.182e-16
     [2757,] 1.246630e+02 0.00066847 -1.174e-16
     [2758,] 1.250071e+02 0.00066663 -6.607e-17
     [2759,] 1.253522e+02 0.00066479 -8.634e-17
     [2760,] 1.256983e+02 0.00066296 -1.242e-16
     [2761,] 1.260453e+02 0.00066114 -1.011e-16
     [2762,] 1.263933e+02 0.00065932 -9.045e-17
     [2763,] 1.267423e+02 0.00065750 -1.407e-17
     [2764,] 1.270922e+02 0.00065569 -3.46e-17
     [2765,] 1.274430e+02 0.00065389 1.371e-17
     [2766,] 1.277949e+02 0.00065209 -8.387e-17
     [2767,] 1.281477e+02 0.00065029 4.678e-17
     [2768,] 1.285015e+02 0.00064850 -3.299e-17
     [2769,] 1.288562e+02 0.00064671 -1.434e-16
     [2770,] 1.292120e+02 0.00064493 2.983e-17
     [2771,] 1.295687e+02 0.00064316 -7.291e-17
     [2772,] 1.299264e+02 0.00064139 -1.079e-16
     [2773,] 1.302851e+02 0.00063962 9.948e-18
     [2774,] 1.306448e+02 0.00063786 -1.11e-16
     [2775,] 1.310055e+02 0.00063610 -3.721e-17
     [2776,] 1.313672e+02 0.00063435 -6.525e-17
     [2777,] 1.317298e+02 0.00063261 -1.661e-16
     [2778,] 1.320935e+02 0.00063087 -3.28e-17
     [2779,] 1.324582e+02 0.00062913 -5.241e-17
     [2780,] 1.328239e+02 0.00062740 -4.136e-17
     [2781,] 1.331906e+02 0.00062567 -6.411e-17
     [2782,] 1.335583e+02 0.00062395 1.868e-17
     [2783,] 1.339270e+02 0.00062223 -5.414e-17
     [2784,] 1.342967e+02 0.00062052 -8.82e-17
     [2785,] 1.346675e+02 0.00061881 -6.704e-17
     [2786,] 1.350393e+02 0.00061710 -1.256e-16
     [2787,] 1.354121e+02 0.00061540 -3.502e-17
     [2788,] 1.357859e+02 0.00061371 -2.002e-16
     [2789,] 1.361608e+02 0.00061202 -4.294e-17
     [2790,] 1.365367e+02 0.00061034 -6.517e-17
     [2791,] 1.369137e+02 0.00060865 -2.187e-16
     [2792,] 1.372917e+02 0.00060698 -1.586e-16
     [2793,] 1.376707e+02 0.00060531 -1.188e-16
     [2794,] 1.380508e+02 0.00060364 -1.832e-16
     [2795,] 1.384319e+02 0.00060198 -1.065e-16
     [2796,] 1.388141e+02 0.00060032 -2.072e-17
     [2797,] 1.391973e+02 0.00059867 -2.211e-16
     [2798,] 1.395816e+02 0.00059702 -9.254e-17
     [2799,] 1.399670e+02 0.00059538 -6.101e-17
     [2800,] 1.403534e+02 0.00059374 1.43e-17
     [2801,] 1.407409e+02 0.00059210 -3.765e-17
     [2802,] 1.411294e+02 0.00059047 -1.019e-17
     [2803,] 1.415190e+02 0.00058885 -9.172e-17
     [2804,] 1.419097e+02 0.00058723 -1.863e-16
     [2805,] 1.423015e+02 0.00058561 4.084e-17
     [2806,] 1.426944e+02 0.00058400 -3.793e-17
     [2807,] 1.430883e+02 0.00058239 -2.75e-17
     [2808,] 1.434834e+02 0.00058079 5.319e-17
     [2809,] 1.438795e+02 0.00057919 -1.466e-16
     [2810,] 1.442767e+02 0.00057759 -1.249e-16
     [2811,] 1.446750e+02 0.00057600 -1.498e-16
     [2812,] 1.450744e+02 0.00057442 -1.303e-16
     [2813,] 1.454749e+02 0.00057284 8.839e-17
     [2814,] 1.458766e+02 0.00057126 9.279e-17
     [2815,] 1.462793e+02 0.00056969 -8.465e-17
     [2816,] 1.466831e+02 0.00056812 -2.124e-17
     [2817,] 1.470881e+02 0.00056655 -3.57e-17
     [2818,] 1.474942e+02 0.00056499 6.836e-17
     [2819,] 1.479014e+02 0.00056344 -1.507e-16
     [2820,] 1.483097e+02 0.00056189 3.735e-17
     [2821,] 1.487192e+02 0.00056034 8.535e-18
     [2822,] 1.491297e+02 0.00055880 -4.513e-17
     [2823,] 1.495414e+02 0.00055726 -1.248e-16
     [2824,] 1.499543e+02 0.00055572 -7.855e-18
     [2825,] 1.503683e+02 0.00055419 -4.281e-17
     [2826,] 1.507834e+02 0.00055267 -3.345e-17
     [2827,] 1.511997e+02 0.00055115 6.905e-17
     [2828,] 1.516171e+02 0.00054963 7.744e-17
     [2829,] 1.520357e+02 0.00054812 -1.113e-16
     [2830,] 1.524554e+02 0.00054661 -1.255e-16
     [2831,] 1.528763e+02 0.00054510 -1.056e-16
     [2832,] 1.532984e+02 0.00054360 2.421e-17
     [2833,] 1.537216e+02 0.00054210 -3.462e-17
     [2834,] 1.541460e+02 0.00054061 -2.296e-16
     [2835,] 1.545716e+02 0.00053912 3.034e-17
     [2836,] 1.549983e+02 0.00053764 -8.199e-17
     [2837,] 1.554262e+02 0.00053616 -6.351e-17
     [2838,] 1.558553e+02 0.00053468 -1.648e-16
     [2839,] 1.562856e+02 0.00053321 -1.009e-16
     [2840,] 1.567171e+02 0.00053174 -6.517e-17
     [2841,] 1.571497e+02 0.00053028 -7.72e-18
     [2842,] 1.575836e+02 0.00052882 4.329e-17
     [2843,] 1.580186e+02 0.00052736 -9.338e-17
     [2844,] 1.584549e+02 0.00052591 -8.814e-17
     [2845,] 1.588923e+02 0.00052446 -9.514e-17
     [2846,] 1.593310e+02 0.00052302 -3.71e-17
     [2847,] 1.597709e+02 0.00052158 -8.918e-17
     [2848,] 1.602120e+02 0.00052014 4.307e-17
     [2849,] 1.606543e+02 0.00051871 3.558e-17
     [2850,] 1.610978e+02 0.00051728 -1.565e-16
     [2851,] 1.615426e+02 0.00051586 -8.565e-17
     [2852,] 1.619885e+02 0.00051444 -6.282e-17
     [2853,] 1.624358e+02 0.00051302 -8.122e-17
     [2854,] 1.628842e+02 0.00051161 -4.143e-17
     [2855,] 1.633339e+02 0.00051020 6.654e-17
     [2856,] 1.637848e+02 0.00050880 -7.254e-17
     [2857,] 1.642370e+02 0.00050740 -8.123e-17
     [2858,] 1.646904e+02 0.00050600 -3.608e-17
     [2859,] 1.651451e+02 0.00050461 -6.361e-17
     [2860,] 1.656010e+02 0.00050322 -1.22e-16
     [2861,] 1.660582e+02 0.00050183 -5.553e-17
     [2862,] 1.665166e+02 0.00050045 -5.51e-17
     [2863,] 1.669764e+02 0.00049907 6.464e-17
     [2864,] 1.674373e+02 0.00049770 2.795e-17
     [2865,] 1.678996e+02 0.00049633 -1.351e-16
     [2866,] 1.683631e+02 0.00049496 3.86e-17
     [2867,] 1.688279e+02 0.00049360 -3.305e-17
     [2868,] 1.692940e+02 0.00049224 -1.124e-16
     [2869,] 1.697614e+02 0.00049088 -1.161e-16
     [2870,] 1.702301e+02 0.00048953 -2.685e-17
     [2871,] 1.707001e+02 0.00048819 1.435e-17
     [2872,] 1.711713e+02 0.00048684 -1.619e-17
     [2873,] 1.716439e+02 0.00048550 -8.423e-17
     [2874,] 1.721178e+02 0.00048416 -8.609e-17
     [2875,] 1.725929e+02 0.00048283 -5.218e-17
     [2876,] 1.730694e+02 0.00048150 -1.197e-16
     [2877,] 1.735472e+02 0.00048018 -4.316e-17
     [2878,] 1.740264e+02 0.00047885 -1.416e-16
     [2879,] 1.745068e+02 0.00047754 -1.343e-16
     [2880,] 1.749886e+02 0.00047622 -1.457e-17
     [2881,] 1.754717e+02 0.00047491 5.566e-17
     [2882,] 1.759561e+02 0.00047360 -5.605e-17
     [2883,] 1.764419e+02 0.00047230 -5.027e-17
     [2884,] 1.769290e+02 0.00047100 2.541e-17
     [2885,] 1.774175e+02 0.00046970 -8.852e-17
     [2886,] 1.779073e+02 0.00046841 -1.033e-16
     [2887,] 1.783984e+02 0.00046712 2.618e-17
     [2888,] 1.788910e+02 0.00046583 -1.218e-17
     [2889,] 1.793848e+02 0.00046455 2.57e-17
     [2890,] 1.798801e+02 0.00046327 -1.319e-16
     [2891,] 1.803767e+02 0.00046200 -1.067e-16
     [2892,] 1.808747e+02 0.00046072 2.011e-17
     [2893,] 1.813740e+02 0.00045946 -1.43e-16
     [2894,] 1.818747e+02 0.00045819 -1.412e-17
     [2895,] 1.823769e+02 0.00045693 -2.717e-17
     [2896,] 1.828804e+02 0.00045567 -6.13e-17
     [2897,] 1.833853e+02 0.00045442 -1.365e-16
     [2898,] 1.838915e+02 0.00045317 -3.183e-17
     [2899,] 1.843992e+02 0.00045192 -2.32e-17
     [2900,] 1.849083e+02 0.00045067 -1.09e-16
     [2901,] 1.854188e+02 0.00044943 2.536e-17
     [2902,] 1.859307e+02 0.00044820 -1.509e-16
     [2903,] 1.864440e+02 0.00044696 -6.699e-17
     [2904,] 1.869587e+02 0.00044573 7.479e-18
     [2905,] 1.874749e+02 0.00044450 2.236e-18
     [2906,] 1.879925e+02 0.00044328 -9.405e-17
     [2907,] 1.885115e+02 0.00044206 -4.67e-17
     [2908,] 1.890319e+02 0.00044084 -1.01e-16
     [2909,] 1.895538e+02 0.00043963 -1.635e-16
     [2910,] 1.900771e+02 0.00043842 9.679e-18
     [2911,] 1.906019e+02 0.00043721 -2.463e-17
     [2912,] 1.911281e+02 0.00043601 -7.803e-17
     [2913,] 1.916557e+02 0.00043481 5.486e-18
     [2914,] 1.921848e+02 0.00043361 -2.5e-17
     [2915,] 1.927154e+02 0.00043242 2.865e-17
     [2916,] 1.932475e+02 0.00043123 -8.852e-17
     [2917,] 1.937810e+02 0.00043004 -8.15e-17
     [2918,] 1.943160e+02 0.00042885 1.265e-17
     [2919,] 1.948524e+02 0.00042767 -8.503e-17
     [2920,] 1.953904e+02 0.00042650 -8.493e-17
     [2921,] 1.959298e+02 0.00042532 -1.545e-17
     [2922,] 1.964707e+02 0.00042415 -1.534e-17
     [2923,] 1.970131e+02 0.00042298 -4.529e-17
     [2924,] 1.975570e+02 0.00042182 1.692e-17
     [2925,] 1.981024e+02 0.00042066 -1.702e-16
     [2926,] 1.986494e+02 0.00041950 6.451e-17
     [2927,] 1.991978e+02 0.00041834 -4.227e-17
     [2928,] 1.997477e+02 0.00041719 -8.335e-17
     [2929,] 2.002992e+02 0.00041604 1.144e-16
     [2930,] 2.008522e+02 0.00041490 5.557e-17
     [2931,] 2.014067e+02 0.00041376 -6.812e-18
     [2932,] 2.019627e+02 0.00041262 8.328e-17
     [2933,] 2.025203e+02 0.00041148 7.49e-17
     [2934,] 2.030794e+02 0.00041035 -4.426e-17
     [2935,] 2.036400e+02 0.00040922 3.744e-17
     [2936,] 2.042022e+02 0.00040809 1.562e-16
     [2937,] 2.047660e+02 0.00040697 -6.232e-17
     [2938,] 2.053313e+02 0.00040585 5.735e-17
     [2939,] 2.058982e+02 0.00040473 1.773e-16
     [2940,] 2.064666e+02 0.00040362 8.703e-17
     [2941,] 2.070366e+02 0.00040250 1.474e-16
     [2942,] 2.076082e+02 0.00040140 7.559e-17
     [2943,] 2.081814e+02 0.00040029 5.5e-17
     [2944,] 2.087561e+02 0.00039919 5.961e-17
     [2945,] 2.093324e+02 0.00039809 -8.477e-17
     [2946,] 2.099104e+02 0.00039699 -2.378e-17
     [2947,] 2.104899e+02 0.00039590 1.137e-16
     [2948,] 2.110710e+02 0.00039481 2.425e-18
     [2949,] 2.116537e+02 0.00039372 1.648e-17
     [2950,] 2.122380e+02 0.00039264 -9.598e-17
     [2951,] 2.128240e+02 0.00039156 1.043e-16
     [2952,] 2.134115e+02 0.00039048 -6.339e-18
     [2953,] 2.140007e+02 0.00038941 7.703e-17
     [2954,] 2.145915e+02 0.00038833 1.032e-16
     [2955,] 2.151840e+02 0.00038727 1.364e-16
     [2956,] 2.157780e+02 0.00038620 -6.379e-17
     [2957,] 2.163737e+02 0.00038514 7.119e-17
     [2958,] 2.169711e+02 0.00038408 2.173e-17
     [2959,] 2.175701e+02 0.00038302 9.425e-18
     [2960,] 2.181708e+02 0.00038196 -2.002e-17
     [2961,] 2.187731e+02 0.00038091 1.261e-16
     [2962,] 2.193771e+02 0.00037986 7.865e-17
     [2963,] 2.199827e+02 0.00037882 -3.272e-17
     [2964,] 2.205900e+02 0.00037777 5.71e-17
     [2965,] 2.211990e+02 0.00037673 -2.395e-17
     [2966,] 2.218097e+02 0.00037570 8.566e-17
     [2967,] 2.224221e+02 0.00037466 9.883e-17
     [2968,] 2.230361e+02 0.00037363 5.203e-17
     [2969,] 2.236519e+02 0.00037260 1.101e-17
     [2970,] 2.242694e+02 0.00037158 -8.405e-17
     [2971,] 2.248885e+02 0.00037055 -1.012e-17
     [2972,] 2.255094e+02 0.00036953 5.965e-17
     [2973,] 2.261320e+02 0.00036852 -1.362e-17
     [2974,] 2.267563e+02 0.00036750 -7.84e-18
     [2975,] 2.273823e+02 0.00036649 8.281e-17
     [2976,] 2.280100e+02 0.00036548 -2.544e-17
     [2977,] 2.286395e+02 0.00036447 -8.031e-18
     [2978,] 2.292707e+02 0.00036347 -1.281e-16
     [2979,] 2.299037e+02 0.00036247 6.645e-17
     [2980,] 2.305384e+02 0.00036147 -7.303e-17
     [2981,] 2.311749e+02 0.00036048 -1.339e-17
     [2982,] 2.318131e+02 0.00035948 -4.778e-17
     [2983,] 2.324531e+02 0.00035850 -8.137e-17
     [2984,] 2.330948e+02 0.00035751 -1.089e-16
     [2985,] 2.337383e+02 0.00035652 -1.408e-17
     [2986,] 2.343836e+02 0.00035554 2.106e-17
     [2987,] 2.350307e+02 0.00035456 -3.665e-17
     [2988,] 2.356796e+02 0.00035359 -7.411e-17
     [2989,] 2.363302e+02 0.00035261 -8.284e-17
     [2990,] 2.369827e+02 0.00035164 -8.285e-17
     [2991,] 2.376370e+02 0.00035067 -1.029e-16
     [2992,] 2.382930e+02 0.00034971 2.841e-17
     [2993,] 2.389509e+02 0.00034875 -5.204e-17
     [2994,] 2.396106e+02 0.00034779 -1.076e-16
     [2995,] 2.402721e+02 0.00034683 -3.36e-17
     [2996,] 2.409354e+02 0.00034587 -3.663e-17
     [2997,] 2.416006e+02 0.00034492 3.698e-18
     [2998,] 2.422676e+02 0.00034397 -1.854e-17
     [2999,] 2.429364e+02 0.00034303 -6.268e-17
     [3000,] 2.436071e+02 0.00034208 -5.22e-17
     [3001,] 2.442797e+02 0.00034114 3.741e-17
     [3002,] 2.449541e+02 0.00034020 -9.428e-17
     [3003,] 2.456303e+02 0.00033926 -1.251e-17
     [3004,] 2.463085e+02 0.00033833 -3.348e-17
     [3005,] 2.469885e+02 0.00033740 2.887e-17
     [3006,] 2.476703e+02 0.00033647 -5.896e-17
     [3007,] 2.483541e+02 0.00033554 -6.896e-17
     [3008,] 2.490398e+02 0.00033462 -3.259e-17
     [3009,] 2.497273e+02 0.00033370 9.402e-17
     [3010,] 2.504167e+02 0.00033278 2.598e-17
     [3011,] 2.511081e+02 0.00033186 -9.439e-17
     [3012,] 2.518013e+02 0.00033095 -3.64e-17
     [3013,] 2.524965e+02 0.00033004 -7.669e-17
     [3014,] 2.531936e+02 0.00032913 1.122e-16
     [3015,] 2.538926e+02 0.00032822 -8.772e-17
     [3016,] 2.545935e+02 0.00032732 -1.098e-16
     [3017,] 2.552964e+02 0.00032642 3.69e-17
     [3018,] 2.560012e+02 0.00032552 -6.246e-17
     [3019,] 2.567080e+02 0.00032462 -4.632e-17
     [3020,] 2.574167e+02 0.00032373 3.849e-17
     [3021,] 2.581274e+02 0.00032284 9.765e-17
     [3022,] 2.588400e+02 0.00032195 -6.194e-17
     [3023,] 2.595546e+02 0.00032106 5.816e-17
     [3024,] 2.602712e+02 0.00032018 7.125e-17
     [3025,] 2.609897e+02 0.00031930 3.951e-17
     [3026,] 2.617102e+02 0.00031842 -9.708e-17
     [3027,] 2.624328e+02 0.00031754 -1.197e-16
     [3028,] 2.631573e+02 0.00031667 3.842e-17
     [3029,] 2.638838e+02 0.00031580 -1.073e-17
     [3030,] 2.646123e+02 0.00031493 -1.307e-16
     [3031,] 2.653429e+02 0.00031406 -4.761e-17
     [3032,] 2.660754e+02 0.00031319 -1.81e-16
     [3033,] 2.668100e+02 0.00031233 -3.332e-17
     [3034,] 2.675466e+02 0.00031147 -5.84e-17
     [3035,] 2.682852e+02 0.00031061 -2.396e-17
     [3036,] 2.690259e+02 0.00030976 -7.558e-17
     [3037,] 2.697686e+02 0.00030891 3.772e-17
     [3038,] 2.705134e+02 0.00030806 1.146e-16
     [3039,] 2.712602e+02 0.00030721 -5.47e-17
     [3040,] 2.720091e+02 0.00030636 5.547e-18
     [3041,] 2.727601e+02 0.00030552 1.835e-18
     [3042,] 2.735131e+02 0.00030468 -4.651e-17
     [3043,] 2.742682e+02 0.00030384 -2.431e-17
     [3044,] 2.750254e+02 0.00030300 -1.28e-16
     [3045,] 2.757847e+02 0.00030217 6.474e-18
     [3046,] 2.765460e+02 0.00030134 -8.83e-18
     [3047,] 2.773095e+02 0.00030051 -3.663e-17
     [3048,] 2.780751e+02 0.00029968 -1.382e-16
     [3049,] 2.788428e+02 0.00029885 2.125e-17
     [3050,] 2.796126e+02 0.00029803 -3.38e-17
     [3051,] 2.803846e+02 0.00029721 -1.678e-16
     [3052,] 2.811587e+02 0.00029639 -1.773e-17
     [3053,] 2.819349e+02 0.00029558 -5.007e-17
     [3054,] 2.827132e+02 0.00029476 -5.878e-17
     [3055,] 2.834937e+02 0.00029395 6.112e-18
     [3056,] 2.842764e+02 0.00029314 7.043e-17
     [3057,] 2.850612e+02 0.00029233 -1.603e-16
     [3058,] 2.858482e+02 0.00029153 -7.767e-17
     [3059,] 2.866374e+02 0.00029073 -1.666e-16
     [3060,] 2.874287e+02 0.00028993 -1.831e-17
     [3061,] 2.882222e+02 0.00028913 -6.988e-17
     [3062,] 2.890179e+02 0.00028833 -1.013e-16
     [3063,] 2.898159e+02 0.00028754 -3.311e-17
     [3064,] 2.906160e+02 0.00028675 -1.263e-16
     [3065,] 2.914183e+02 0.00028596 -1.438e-16
     [3066,] 2.922228e+02 0.00028517 9.157e-17
     [3067,] 2.930296e+02 0.00028439 -5.526e-17
     [3068,] 2.938386e+02 0.00028360 8.919e-17
     [3069,] 2.946498e+02 0.00028282 -2.728e-17
     [3070,] 2.954633e+02 0.00028204 -4.895e-17
     [3071,] 2.962790e+02 0.00028127 -1.449e-16
     [3072,] 2.970969e+02 0.00028049 -4.763e-17
     [3073,] 2.979172e+02 0.00027972 6.71e-17
     [3074,] 2.987396e+02 0.00027895 -6.536e-17
     [3075,] 2.995644e+02 0.00027818 3.488e-17
     [3076,] 3.003914e+02 0.00027742 -1.053e-17
     [3077,] 3.012207e+02 0.00027665 -5.712e-17
     [3078,] 3.020523e+02 0.00027589 -7.668e-17
     [3079,] 3.028862e+02 0.00027513 1.665e-17
     [3080,] 3.037224e+02 0.00027437 5.536e-17
     [3081,] 3.045609e+02 0.00027362 -1.532e-16
     [3082,] 3.054018e+02 0.00027286 -4.959e-17
     [3083,] 3.062449e+02 0.00027211 -7.754e-17
     [3084,] 3.070904e+02 0.00027136 -1.113e-16
     [3085,] 3.079382e+02 0.00027062 -1.182e-16
     [3086,] 3.087883e+02 0.00026987 -1.472e-16
     [3087,] 3.096408e+02 0.00026913 -3.797e-18
     [3088,] 3.104957e+02 0.00026839 -1.209e-16
     [3089,] 3.113529e+02 0.00026765 -6.033e-17
     [3090,] 3.122125e+02 0.00026691 2.64e-17
     [3091,] 3.130744e+02 0.00026618 4.426e-17
     [3092,] 3.139387e+02 0.00026544 9.726e-17
     [3093,] 3.148054e+02 0.00026471 4.725e-17
     [3094,] 3.156745e+02 0.00026398 4.91e-17
     [3095,] 3.165460e+02 0.00026326 -8.602e-17
     [3096,] 3.174200e+02 0.00026253 6.398e-18
     [3097,] 3.182963e+02 0.00026181 -7.652e-17
     [3098,] 3.191750e+02 0.00026109 -5.484e-17
     [3099,] 3.200562e+02 0.00026037 -1.258e-16
     [3100,] 3.209398e+02 0.00025965 2.295e-17
     [3101,] 3.218258e+02 0.00025894 1.024e-16
     [3102,] 3.227143e+02 0.00025823 4.926e-17
     [3103,] 3.236053e+02 0.00025752 -4.786e-17
     [3104,] 3.244987e+02 0.00025681 -4.623e-17
     [3105,] 3.253945e+02 0.00025610 1.138e-16
     [3106,] 3.262929e+02 0.00025539 -1.53e-16
     [3107,] 3.271937e+02 0.00025469 -3.162e-17
     [3108,] 3.280970e+02 0.00025399 -8.803e-17
     [3109,] 3.290028e+02 0.00025329 -4.047e-17
     [3110,] 3.299111e+02 0.00025259 -3.968e-17
     [3111,] 3.308219e+02 0.00025190 -9.965e-17
     [3112,] 3.317352e+02 0.00025120 -9.531e-17
     [3113,] 3.326511e+02 0.00025051 -3.367e-17
     [3114,] 3.335695e+02 0.00024982 -5.184e-17
     [3115,] 3.344904e+02 0.00024914 -3.57e-17
     [3116,] 3.354138e+02 0.00024845 9.073e-19
     [3117,] 3.363398e+02 0.00024777 1.056e-16
     [3118,] 3.372684e+02 0.00024708 -1.103e-16
     [3119,] 3.381995e+02 0.00024640 -7.439e-17
     [3120,] 3.391332e+02 0.00024572 -1.251e-16
     [3121,] 3.400695e+02 0.00024505 -1.61e-16
     [3122,] 3.410083e+02 0.00024437 -4.495e-17
     [3123,] 3.419498e+02 0.00024370 -9.272e-17
     [3124,] 3.428938e+02 0.00024303 -1.393e-17
     [3125,] 3.438405e+02 0.00024236 -3.886e-18
     [3126,] 3.447897e+02 0.00024169 6.661e-17
     [3127,] 3.457416e+02 0.00024103 -8.998e-17
     [3128,] 3.466961e+02 0.00024036 -6.72e-17
     [3129,] 3.476533e+02 0.00023970 2.197e-17
     [3130,] 3.486131e+02 0.00023904 -2.422e-17
     [3131,] 3.495755e+02 0.00023838 -4.427e-17
     [3132,] 3.505406e+02 0.00023773 -5.503e-17
     [3133,] 3.515084e+02 0.00023707 -4.625e-17
     [3134,] 3.524788e+02 0.00023642 -3.431e-17
     [3135,] 3.534519e+02 0.00023577 2.116e-17
     [3136,] 3.544277e+02 0.00023512 -9.155e-17
     [3137,] 3.554062e+02 0.00023447 -7.349e-17
     [3138,] 3.563874e+02 0.00023383 -7.913e-17
     [3139,] 3.573713e+02 0.00023318 1.346e-17
     [3140,] 3.583579e+02 0.00023254 -7.706e-17
     [3141,] 3.593473e+02 0.00023190 2.197e-17
     [3142,] 3.603393e+02 0.00023126 -1.027e-16
     [3143,] 3.613342e+02 0.00023063 4.423e-17
     [3144,] 3.623317e+02 0.00022999 -8.581e-17
     [3145,] 3.633320e+02 0.00022936 2.299e-17
     [3146,] 3.643351e+02 0.00022873 -3.696e-17
     [3147,] 3.653410e+02 0.00022810 -2.913e-17
     [3148,] 3.663496e+02 0.00022747 -2.14e-17
     [3149,] 3.673610e+02 0.00022684 4.508e-17
     [3150,] 3.683752e+02 0.00022622 3.907e-17
     [3151,] 3.693922e+02 0.00022560 6.563e-17
     [3152,] 3.704120e+02 0.00022497 -1.702e-17
     [3153,] 3.714346e+02 0.00022436 -1.014e-16
     [3154,] 3.724601e+02 0.00022374 -6.374e-17
     [3155,] 3.734883e+02 0.00022312 -6.3e-17
     [3156,] 3.745195e+02 0.00022251 -1.232e-16
     [3157,] 3.755534e+02 0.00022189 -1.312e-16
     [3158,] 3.765902e+02 0.00022128 -1.686e-17
     [3159,] 3.776299e+02 0.00022067 7.184e-17
     [3160,] 3.786725e+02 0.00022007 -7.672e-18
     [3161,] 3.797179e+02 0.00021946 -4.089e-17
     [3162,] 3.807662e+02 0.00021886 -7.667e-17
     [3163,] 3.818174e+02 0.00021825 -6.623e-17
     [3164,] 3.828715e+02 0.00021765 1.601e-17
     [3165,] 3.839285e+02 0.00021705 -1.342e-16
     [3166,] 3.849885e+02 0.00021646 -9.454e-17
     [3167,] 3.860513e+02 0.00021586 -6.855e-17
     [3168,] 3.871171e+02 0.00021527 -1.51e-16
     [3169,] 3.881859e+02 0.00021467 -2.663e-17
     [3170,] 3.892576e+02 0.00021408 2.853e-17
     [3171,] 3.903322e+02 0.00021349 6.447e-17
     [3172,] 3.914099e+02 0.00021291 -1.663e-16
     [3173,] 3.924904e+02 0.00021232 1.011e-18
     [3174,] 3.935740e+02 0.00021173 -2.993e-17
     [3175,] 3.946606e+02 0.00021115 2.985e-17
     [3176,] 3.957502e+02 0.00021057 6.267e-18
     [3177,] 3.968427e+02 0.00020999 -4.186e-17
     [3178,] 3.979383e+02 0.00020941 -1.624e-16
     [3179,] 3.990369e+02 0.00020884 -7.564e-17
     [3180,] 4.001386e+02 0.00020826 -1.039e-16
     [3181,] 4.012433e+02 0.00020769 -5.516e-17
     [3182,] 4.023510e+02 0.00020712 -4.639e-17
     [3183,] 4.034618e+02 0.00020655 -3.623e-17
     [3184,] 4.045757e+02 0.00020598 -1.891e-16
     [3185,] 4.056926e+02 0.00020541 -4.818e-17
     [3186,] 4.068127e+02 0.00020484 5.664e-18
     [3187,] 4.079358e+02 0.00020428 -1.371e-16
     [3188,] 4.090620e+02 0.00020372 -1.856e-16
     [3189,] 4.101913e+02 0.00020316 -1.023e-17
     [3190,] 4.113238e+02 0.00020260 -6.758e-17
     [3191,] 4.124593e+02 0.00020204 2.558e-17
     [3192,] 4.135980e+02 0.00020148 -8.471e-17
     [3193,] 4.147399e+02 0.00020093 -5.963e-17
     [3194,] 4.158849e+02 0.00020038 -4.848e-17
     [3195,] 4.170330e+02 0.00019982 -3.666e-17
     [3196,] 4.181844e+02 0.00019927 -8.505e-17
     [3197,] 4.193389e+02 0.00019873 -6.804e-17
     [3198,] 4.204966e+02 0.00019818 -3.212e-17
     [3199,] 4.216575e+02 0.00019763 -1.981e-16
     [3200,] 4.228216e+02 0.00019709 -8.592e-17
     [3201,] 4.239889e+02 0.00019655 -1.278e-18
     [3202,] 4.251594e+02 0.00019600 -1.548e-16
     [3203,] 4.263332e+02 0.00019547 -7.169e-17
     [3204,] 4.275102e+02 0.00019493 -5.047e-17
     [3205,] 4.286905e+02 0.00019439 3.067e-18
     [3206,] 4.298740e+02 0.00019386 -4.713e-17
     [3207,] 4.310608e+02 0.00019332 -9.108e-17
     [3208,] 4.322508e+02 0.00019279 -8.318e-17
     [3209,] 4.334442e+02 0.00019226 -1.158e-17
     [3210,] 4.346408e+02 0.00019173 -2.501e-17
     [3211,] 4.358408e+02 0.00019120 2.143e-17
     [3212,] 4.370440e+02 0.00019067 -9.98e-17
     [3213,] 4.382506e+02 0.00019015 -1.008e-17
     [3214,] 4.394605e+02 0.00018963 -4.925e-17
     [3215,] 4.406738e+02 0.00018910 -1.123e-16
     [3216,] 4.418904e+02 0.00018858 -5.392e-17
     [3217,] 4.431103e+02 0.00018806 -1.288e-17
     [3218,] 4.443336e+02 0.00018755 -7.625e-17
     [3219,] 4.455603e+02 0.00018703 1.435e-17
     [3220,] 4.467904e+02 0.00018652 -1.251e-16
     [3221,] 4.480239e+02 0.00018600 -1.209e-16
     [3222,] 4.492608e+02 0.00018549 -6.749e-17
     [3223,] 4.505011e+02 0.00018498 -1.468e-16
     [3224,] 4.517449e+02 0.00018447 -1.7e-16
     [3225,] 4.529920e+02 0.00018396 -8.036e-17
     [3226,] 4.542426e+02 0.00018346 -6.679e-17
     [3227,] 4.554967e+02 0.00018295 -1.824e-16
     [3228,] 4.567542e+02 0.00018245 -1.614e-16
     [3229,] 4.580152e+02 0.00018194 3.054e-17
     [3230,] 4.592797e+02 0.00018144 -2.468e-17
     [3231,] 4.605476e+02 0.00018094 2.835e-17
     [3232,] 4.618191e+02 0.00018045 -4.072e-17
     [3233,] 4.630941e+02 0.00017995 -1.136e-16
     [3234,] 4.643726e+02 0.00017945 -1.015e-16
     [3235,] 4.656546e+02 0.00017896 -5.394e-17
     [3236,] 4.669402e+02 0.00017847 -7.107e-17
     [3237,] 4.682293e+02 0.00017798 -1.178e-16
     [3238,] 4.695220e+02 0.00017749 2.291e-17
     [3239,] 4.708182e+02 0.00017700 -1.252e-16
     [3240,] 4.721180e+02 0.00017651 -3.294e-17
     [3241,] 4.734214e+02 0.00017602 -7.005e-17
     [3242,] 4.747284e+02 0.00017554 -4.084e-17
     [3243,] 4.760391e+02 0.00017506 1.074e-17
     [3244,] 4.773533e+02 0.00017457 -7.374e-17
     [3245,] 4.786712e+02 0.00017409 -9.595e-17
     [3246,] 4.799927e+02 0.00017361 -5.068e-17
     [3247,] 4.813178e+02 0.00017314 -3.426e-17
     [3248,] 4.826466e+02 0.00017266 -5.479e-17
     [3249,] 4.839791e+02 0.00017218 -8.043e-17
     [3250,] 4.853153e+02 0.00017171 -2.932e-17
     [3251,] 4.866551e+02 0.00017124 2.377e-17
     [3252,] 4.879986e+02 0.00017077 -4.807e-17
     [3253,] 4.893459e+02 0.00017030 -2.771e-17
     [3254,] 4.906969e+02 0.00016983 -3.767e-17
     [3255,] 4.920516e+02 0.00016936 -4.442e-19
     [3256,] 4.934100e+02 0.00016889 6.933e-17
     [3257,] 4.947722e+02 0.00016843 2.431e-17
     [3258,] 4.961382e+02 0.00016796 -5.991e-17
     [3259,] 4.975079e+02 0.00016750 -1.574e-16
     [3260,] 4.988814e+02 0.00016704 -3.947e-17
     [3261,] 5.002587e+02 0.00016658 9.75e-17
     [3262,] 5.016398e+02 0.00016612 -9.109e-17
     [3263,] 5.030247e+02 0.00016566 1.603e-17
     [3264,] 5.044134e+02 0.00016521 -4.013e-17
     [3265,] 5.058060e+02 0.00016475 -1.915e-16
     [3266,] 5.072024e+02 0.00016430 -5.446e-19
     [3267,] 5.086027e+02 0.00016385 2.557e-17
     [3268,] 5.100068e+02 0.00016340 -1.063e-16
     [3269,] 5.114148e+02 0.00016295 -2.758e-17
     [3270,] 5.128267e+02 0.00016250 -5.037e-17
     [3271,] 5.142425e+02 0.00016205 -1.513e-16
     [3272,] 5.156622e+02 0.00016160 -4.719e-17
     [3273,] 5.170859e+02 0.00016116 8.855e-18
     [3274,] 5.185134e+02 0.00016072 -4.955e-17
     [3275,] 5.199449e+02 0.00016027 -4.256e-17
     [3276,] 5.213804e+02 0.00015983 -3.416e-17
     [3277,] 5.228198e+02 0.00015939 -2.026e-16
     [3278,] 5.242632e+02 0.00015895 -1.951e-16
     [3279,] 5.257105e+02 0.00015852 -1.328e-16
     [3280,] 5.271619e+02 0.00015808 1.086e-17
     [3281,] 5.286173e+02 0.00015764 -9.113e-18
     [3282,] 5.300767e+02 0.00015721 3.598e-18
     [3283,] 5.315401e+02 0.00015678 -1.887e-16
     [3284,] 5.330075e+02 0.00015635 -4.699e-17
     [3285,] 5.344791e+02 0.00015592 -3.61e-17
     [3286,] 5.359546e+02 0.00015549 -1.428e-16
     [3287,] 5.374343e+02 0.00015506 -2.021e-17
     [3288,] 5.389180e+02 0.00015463 4.026e-17
     [3289,] 5.404058e+02 0.00015421 -1.041e-16
     [3290,] 5.418978e+02 0.00015378 -5.531e-18
     [3291,] 5.433938e+02 0.00015336 -2.806e-17
     [3292,] 5.448940e+02 0.00015293 -4.799e-17
     [3293,] 5.463984e+02 0.00015251 -6.091e-17
     [3294,] 5.479068e+02 0.00015209 -1.417e-16
     [3295,] 5.494195e+02 0.00015168 -1.745e-16
     [3296,] 5.509363e+02 0.00015126 -1.248e-16
     [3297,] 5.524573e+02 0.00015084 -6.136e-17
     [3298,] 5.539825e+02 0.00015043 -1.269e-16
     [3299,] 5.555119e+02 0.00015001 -9.005e-17
     [3300,] 5.570456e+02 0.00014960 -2.677e-17
     [3301,] 5.585835e+02 0.00014919 -2.084e-16
     [3302,] 5.601256e+02 0.00014878 8.569e-17
     [3303,] 5.616720e+02 0.00014837 2.664e-17
     [3304,] 5.632226e+02 0.00014796 -8.87e-17
     [3305,] 5.647775e+02 0.00014755 -1.93e-16
     [3306,] 5.663368e+02 0.00014714 -4.502e-17
     [3307,] 5.679003e+02 0.00014674 -7.081e-17
     [3308,] 5.694681e+02 0.00014634 -3.084e-17
     [3309,] 5.710403e+02 0.00014593 3.968e-17
     [3310,] 5.726168e+02 0.00014553 -6.351e-17
     [3311,] 5.741977e+02 0.00014513 -5.676e-17
     [3312,] 5.757829e+02 0.00014473 -5.769e-17
     [3313,] 5.773725e+02 0.00014433 -6.75e-17
     [3314,] 5.789665e+02 0.00014393 -1.839e-16
     [3315,] 5.805649e+02 0.00014354 -9.909e-17
     [3316,] 5.821677e+02 0.00014314 -6.814e-17
     [3317,] 5.837749e+02 0.00014275 9.751e-17
     [3318,] 5.853866e+02 0.00014236 3.841e-17
     [3319,] 5.870027e+02 0.00014196 -1.465e-16
     [3320,] 5.886233e+02 0.00014157 -1.619e-16
     [3321,] 5.902483e+02 0.00014118 -7.966e-17
     [3322,] 5.918779e+02 0.00014079 -3.508e-17
     [3323,] 5.935119e+02 0.00014041 -5.88e-17
     [3324,] 5.951505e+02 0.00014002 -1.832e-16
     [3325,] 5.967936e+02 0.00013964 8.993e-17
     [3326,] 5.984412e+02 0.00013925 -7.523e-17
     [3327,] 6.000933e+02 0.00013887 -3.74e-17
     [3328,] 6.017500e+02 0.00013848 -1.474e-16
     [3329,] 6.034113e+02 0.00013810 -9.296e-17
     [3330,] 6.050772e+02 0.00013772 1.04e-16
     [3331,] 6.067477e+02 0.00013734 8.44e-18
     [3332,] 6.084228e+02 0.00013697 -1.428e-16
     [3333,] 6.101025e+02 0.00013659 -8.462e-17
     [3334,] 6.117869e+02 0.00013621 -4.455e-17
     [3335,] 6.134759e+02 0.00013584 7.394e-17
     [3336,] 6.151695e+02 0.00013546 -1.379e-16
     [3337,] 6.168679e+02 0.00013509 -2.754e-17
     [3338,] 6.185709e+02 0.00013472 -1.694e-17
     [3339,] 6.202786e+02 0.00013435 -1.67e-16
     [3340,] 6.219911e+02 0.00013398 -2.097e-16
     [3341,] 6.237083e+02 0.00013361 -1.056e-16
     [3342,] 6.254302e+02 0.00013324 -1.065e-16
     [3343,] 6.271568e+02 0.00013287 -1.399e-16
     [3344,] 6.288883e+02 0.00013251 -1.382e-16
     [3345,] 6.306245e+02 0.00013214 -3.832e-17
     [3346,] 6.323655e+02 0.00013178 -6.244e-17
     [3347,] 6.341113e+02 0.00013142 -6.597e-17
     [3348,] 6.358620e+02 0.00013106 -1.982e-16
     [3349,] 6.376174e+02 0.00013069 -1.727e-17
     [3350,] 6.393777e+02 0.00013034 4.899e-17
     [3351,] 6.411429e+02 0.00012998 -6.81e-17
     [3352,] 6.429130e+02 0.00012962 2.72e-17
     [3353,] 6.446879e+02 0.00012926 -9.928e-18
     [3354,] 6.464677e+02 0.00012891 -1.923e-16
     [3355,] 6.482525e+02 0.00012855 -6.233e-17
     [3356,] 6.500422e+02 0.00012820 7.372e-17
     [3357,] 6.518368e+02 0.00012784 8.561e-18
     [3358,] 6.536364e+02 0.00012749 -5.092e-17
     [3359,] 6.554409e+02 0.00012714 4.757e-17
     [3360,] 6.572504e+02 0.00012679 -7.467e-17
     [3361,] 6.590649e+02 0.00012644 -1.982e-16
     [3362,] 6.608845e+02 0.00012609 -3.669e-18
     [3363,] 6.627090e+02 0.00012575 -7.063e-17
     [3364,] 6.645386e+02 0.00012540 -1.493e-16
     [3365,] 6.663732e+02 0.00012506 2.339e-17
     [3366,] 6.682130e+02 0.00012471 -1.308e-16
     [3367,] 6.700577e+02 0.00012437 7.017e-17
     [3368,] 6.719076e+02 0.00012402 -4.156e-17
     [3369,] 6.737626e+02 0.00012368 -7.815e-19
     [3370,] 6.756227e+02 0.00012334 -8.281e-18
     [3371,] 6.774879e+02 0.00012300 -3.516e-17
     [3372,] 6.793583e+02 0.00012266 -4.444e-17
     [3373,] 6.812339e+02 0.00012233 -2.987e-17
     [3374,] 6.831146e+02 0.00012199 -8.084e-17
     [3375,] 6.850005e+02 0.00012165 -1.442e-18
     [3376,] 6.868917e+02 0.00012132 -2.547e-17
     [3377,] 6.887880e+02 0.00012099 -8.208e-17
     [3378,] 6.906896e+02 0.00012065 -9.541e-17
     [3379,] 6.925964e+02 0.00012032 -7.26e-17
     [3380,] 6.945085e+02 0.00011999 -1.064e-16
     [3381,] 6.964259e+02 0.00011966 1.794e-17
     [3382,] 6.983486e+02 0.00011933 -1.655e-17
     [3383,] 7.002766e+02 0.00011900 3.763e-17
     [3384,] 7.022099e+02 0.00011867 -1.486e-17
     [3385,] 7.041485e+02 0.00011835 -1.176e-16
     [3386,] 7.060925e+02 0.00011802 -1.579e-16
     [3387,] 7.080419e+02 0.00011770 -9.113e-17
     [3388,] 7.099966e+02 0.00011737 -1.151e-16
     [3389,] 7.119568e+02 0.00011705 -2.017e-17
     [3390,] 7.139223e+02 0.00011673 -1.277e-17
     [3391,] 7.158933e+02 0.00011640 1.106e-17
     [3392,] 7.178697e+02 0.00011608 5.068e-17
     [3393,] 7.198516e+02 0.00011576 -1.328e-16
     [3394,] 7.218389e+02 0.00011545 -1.57e-16
     [3395,] 7.238317e+02 0.00011513 -1.155e-17
     [3396,] 7.258301e+02 0.00011481 -1.291e-16
     [3397,] 7.278339e+02 0.00011449 -1.333e-16
     [3398,] 7.298433e+02 0.00011418 4.501e-18
     [3399,] 7.318582e+02 0.00011387 -7.179e-17
     [3400,] 7.338787e+02 0.00011355 -4.703e-17
     [3401,] 7.359048e+02 0.00011324 -2.595e-17
     [3402,] 7.379365e+02 0.00011293 -9.92e-17
     [3403,] 7.399738e+02 0.00011262 -1.134e-16
     [3404,] 7.420166e+02 0.00011231 -1.173e-16
     [3405,] 7.440652e+02 0.00011200 -1.714e-16
     [3406,] 7.461194e+02 0.00011169 6.674e-17
     [3407,] 7.481792e+02 0.00011138 -6.101e-17
     [3408,] 7.502448e+02 0.00011107 -1.06e-16
     [3409,] 7.523161e+02 0.00011077 -7.932e-17
     [3410,] 7.543930e+02 0.00011046 4.919e-17
     [3411,] 7.564757e+02 0.00011016 -9.229e-17
     [3412,] 7.585642e+02 0.00010986 -1.197e-16
     [3413,] 7.606584e+02 0.00010955 -2.465e-17
     [3414,] 7.627584e+02 0.00010925 -3.703e-17
     [3415,] 7.648642e+02 0.00010895 -9.847e-17
     [3416,] 7.669758e+02 0.00010865 -5.863e-17
     [3417,] 7.690933e+02 0.00010835 -1.222e-16
     [3418,] 7.712166e+02 0.00010805 -2.78e-17
     [3419,] 7.733457e+02 0.00010776 -8.673e-17
     [3420,] 7.754808e+02 0.00010746 -5.867e-17
     [3421,] 7.776217e+02 0.00010716 -1.082e-16
     [3422,] 7.797685e+02 0.00010687 -5.194e-17
     [3423,] 7.819213e+02 0.00010658 -3.261e-17
     [3424,] 7.840800e+02 0.00010628 1.818e-17
     [3425,] 7.862446e+02 0.00010599 -2.861e-17
     [3426,] 7.884153e+02 0.00010570 -3.117e-17
     [3427,] 7.905919e+02 0.00010541 -8.395e-17
     [3428,] 7.927746e+02 0.00010512 -2.429e-17
     [3429,] 7.949632e+02 0.00010483 -1.247e-17
     [3430,] 7.971579e+02 0.00010454 -5.918e-17
     [3431,] 7.993587e+02 0.00010425 -4.313e-17
     [3432,] 8.015656e+02 0.00010396 -1.495e-16
     [3433,] 8.037785e+02 0.00010368 -1.156e-17
     [3434,] 8.059976e+02 0.00010339 -1.018e-16
     [3435,] 8.082227e+02 0.00010311 -4.851e-17
     [3436,] 8.104540e+02 0.00010282 -7.258e-17
     [3437,] 8.126915e+02 0.00010254 -7.405e-17
     [3438,] 8.149352e+02 0.00010226 4.072e-17
     [3439,] 8.171850e+02 0.00010198 3.439e-17
     [3440,] 8.194411e+02 0.00010170 7.043e-17
     [3441,] 8.217034e+02 0.00010142 -6.385e-18
     [3442,] 8.239719e+02 0.00010114 5.402e-17
     [3443,] 8.262467e+02 0.00010086 -4.516e-17
     [3444,] 8.285278e+02 0.00010058 -9.339e-18
     [3445,] 8.308152e+02 0.00010030 -4.78e-17
     [3446,] 8.331089e+02 0.00010003 1.332e-17
     [3447,] 8.354089e+02 0.00009975 6.238e-17
     [3448,] 8.377153e+02 0.00009948 -8.603e-17
     [3449,] 8.400280e+02 0.00009920 -1.276e-16
     [3450,] 8.423471e+02 0.00009893 7.224e-18
     [3451,] 8.446726e+02 0.00009866 -9.149e-17
     [3452,] 8.470046e+02 0.00009839 -1.192e-16
     [3453,] 8.493430e+02 0.00009812 3.696e-17
     [3454,] 8.516878e+02 0.00009784 -1.641e-16
     [3455,] 8.540391e+02 0.00009758 -1.681e-16
     [3456,] 8.563969e+02 0.00009731 -4.664e-17
     [3457,] 8.587613e+02 0.00009704 3.416e-17
     [3458,] 8.611321e+02 0.00009677 4.015e-17
     [3459,] 8.635095e+02 0.00009651 -9.166e-17
     [3460,] 8.658934e+02 0.00009624 -5.044e-17
     [3461,] 8.682840e+02 0.00009597 -3.161e-17
     [3462,] 8.706811e+02 0.00009571 -1.595e-16
     [3463,] 8.730849e+02 0.00009545 -1.181e-16
     [3464,] 8.754953e+02 0.00009518 -7.351e-17
     [3465,] 8.779123e+02 0.00009492 -5.276e-17
     [3466,] 8.803360e+02 0.00009466 -1.393e-16
     [3467,] 8.827664e+02 0.00009440 -8.724e-17
     [3468,] 8.852035e+02 0.00009414 -1.491e-16
     [3469,] 8.876474e+02 0.00009388 -2.612e-17
     [3470,] 8.900980e+02 0.00009362 -1.689e-16
     [3471,] 8.925553e+02 0.00009336 -2.467e-17
     [3472,] 8.950195e+02 0.00009311 -1.111e-16
     [3473,] 8.974904e+02 0.00009285 -4.232e-17
     [3474,] 8.999682e+02 0.00009260 3.097e-17
     [3475,] 9.024528e+02 0.00009234 7.682e-17
     [3476,] 9.049443e+02 0.00009209 -1.31e-16
     [3477,] 9.074426e+02 0.00009183 -9.802e-17
     [3478,] 9.099478e+02 0.00009158 -1.5e-16
     [3479,] 9.124600e+02 0.00009133 -9.429e-17
     [3480,] 9.149791e+02 0.00009108 -1.273e-16
     [3481,] 9.175051e+02 0.00009083 -9.677e-17
     [3482,] 9.200382e+02 0.00009058 3.906e-17
     [3483,] 9.225782e+02 0.00009033 -6.265e-17
     [3484,] 9.251252e+02 0.00009008 -1.41e-16
     [3485,] 9.276793e+02 0.00008983 9.319e-18
     [3486,] 9.302404e+02 0.00008958 3.402e-18
     [3487,] 9.328086e+02 0.00008934 -4.291e-17
     [3488,] 9.353838e+02 0.00008909 -7.383e-17
     [3489,] 9.379662e+02 0.00008884 -4.606e-17
     [3490,] 9.405557e+02 0.00008860 2.586e-17
     [3491,] 9.431524e+02 0.00008836 -2.485e-17
     [3492,] 9.457562e+02 0.00008811 5.294e-17
     [3493,] 9.483672e+02 0.00008787 -1.099e-16
     [3494,] 9.509854e+02 0.00008763 -9.246e-17
     [3495,] 9.536109e+02 0.00008739 -8.41e-17
     [3496,] 9.562436e+02 0.00008715 7.258e-17
     [3497,] 9.588836e+02 0.00008691 -8.784e-17
     [3498,] 9.615308e+02 0.00008667 -9.904e-17
     [3499,] 9.641854e+02 0.00008643 4.825e-17
     [3500,] 9.668473e+02 0.00008619 -1.726e-16
     [3501,] 9.695165e+02 0.00008595 -1.128e-16
     [3502,] 9.721931e+02 0.00008572 -1.323e-17
     [3503,] 9.748772e+02 0.00008548 1.214e-17
     [3504,] 9.775686e+02 0.00008525 -1.257e-16
     [3505,] 9.802674e+02 0.00008501 -7.217e-17
     [3506,] 9.829737e+02 0.00008478 3.875e-17
     [3507,] 9.856875e+02 0.00008454 -4.374e-17
     [3508,] 9.884087e+02 0.00008431 -1.239e-16
     [3509,] 9.911375e+02 0.00008408 4.307e-17
     [3510,] 9.938738e+02 0.00008385 -2.654e-17
     [3511,] 9.966177e+02 0.00008362 -7.125e-17
     [3512,] 9.993691e+02 0.00008339 -1.05e-16
     [3513,] 1.002128e+03 0.00008316 1.283e-17
     [3514,] 1.004895e+03 0.00008293 -5.225e-17
     [3515,] 1.007669e+03 0.00008270 8.561e-18
     [3516,] 1.010451e+03 0.00008247 7.41e-17
     [3517,] 1.013241e+03 0.00008224 -6.368e-17
     [3518,] 1.016038e+03 0.00008202 -1.199e-16
     [3519,] 1.018843e+03 0.00008179 -6.802e-17
     [3520,] 1.021656e+03 0.00008157 -4.685e-17
     [3521,] 1.024476e+03 0.00008134 -9.203e-17
     [3522,] 1.027305e+03 0.00008112 -7.811e-17
     [3523,] 1.030141e+03 0.00008090 1.843e-17
     [3524,] 1.032985e+03 0.00008067 -8.243e-17
     [3525,] 1.035837e+03 0.00008045 1.449e-17
     [3526,] 1.038696e+03 0.00008023 1.603e-17
     [3527,] 1.041564e+03 0.00008001 -1.343e-16
     [3528,] 1.044439e+03 0.00007979 -1.936e-17
     [3529,] 1.047323e+03 0.00007957 -3.234e-17
     [3530,] 1.050214e+03 0.00007935 -3.308e-17
     [3531,] 1.053114e+03 0.00007913 2.076e-17
     [3532,] 1.056021e+03 0.00007891 -1.446e-16
     [3533,] 1.058937e+03 0.00007870 2.726e-17
     [3534,] 1.061860e+03 0.00007848 -5.238e-17
     [3535,] 1.064792e+03 0.00007826 -1.079e-16
     [3536,] 1.067731e+03 0.00007805 -1.859e-17
     [3537,] 1.070679e+03 0.00007783 4.57e-17
     [3538,] 1.073635e+03 0.00007762 -5.897e-17
     [3539,] 1.076599e+03 0.00007740 -7.78e-17
     [3540,] 1.079571e+03 0.00007719 -1.48e-16
     [3541,] 1.082552e+03 0.00007698 -8.082e-17
     [3542,] 1.085540e+03 0.00007677 4.255e-18
     [3543,] 1.088537e+03 0.00007656 -1.36e-16
     [3544,] 1.091543e+03 0.00007634 -1.869e-17
     [3545,] 1.094556e+03 0.00007613 -1.013e-16
     [3546,] 1.097578e+03 0.00007592 -1.553e-17
     [3547,] 1.100608e+03 0.00007572 4.703e-17
     [3548,] 1.103647e+03 0.00007551 3.113e-17
     [3549,] 1.106693e+03 0.00007530 -1.864e-16
     [3550,] 1.109749e+03 0.00007509 5.767e-17
     [3551,] 1.112813e+03 0.00007489 -1.098e-16
     [3552,] 1.115885e+03 0.00007468 3.118e-17
     [3553,] 1.118965e+03 0.00007447 4.592e-17
     [3554,] 1.122055e+03 0.00007427 2.888e-17
     [3555,] 1.125152e+03 0.00007406 -4.818e-17
     [3556,] 1.128259e+03 0.00007386 -2.69e-17
     [3557,] 1.131374e+03 0.00007366 -4.402e-17
     [3558,] 1.134497e+03 0.00007345 -9.457e-17
     [3559,] 1.137629e+03 0.00007325 2.813e-17
     [3560,] 1.140770e+03 0.00007305 2.951e-17
     [3561,] 1.143919e+03 0.00007285 -7.519e-17
     [3562,] 1.147077e+03 0.00007265 1.254e-17
     [3563,] 1.150244e+03 0.00007245 -5.445e-17
     [3564,] 1.153420e+03 0.00007225 -5.351e-17
     [3565,] 1.156604e+03 0.00007205 -1.232e-16
     [3566,] 1.159797e+03 0.00007185 7.292e-17
     [3567,] 1.162999e+03 0.00007165 -2.661e-17
     [3568,] 1.166210e+03 0.00007146 -9.814e-17
     [3569,] 1.169430e+03 0.00007126 3.908e-17
     [3570,] 1.172658e+03 0.00007106 -1.007e-16
     [3571,] 1.175895e+03 0.00007087 -6.215e-17
     [3572,] 1.179142e+03 0.00007067 -1.397e-16
     [3573,] 1.182397e+03 0.00007048 -1.648e-16
     [3574,] 1.185662e+03 0.00007028 -9.662e-17
     [3575,] 1.188935e+03 0.00007009 -1.616e-16
     [3576,] 1.192217e+03 0.00006990 6.107e-17
     [3577,] 1.195509e+03 0.00006971 -6.574e-17
     [3578,] 1.198809e+03 0.00006951 -3.389e-19
     [3579,] 1.202119e+03 0.00006932 6.897e-17
     [3580,] 1.205438e+03 0.00006913 -1.439e-16
     [3581,] 1.208766e+03 0.00006894 -3.21e-17
     [3582,] 1.212103e+03 0.00006875 2.334e-17
     [3583,] 1.215449e+03 0.00006856 -9.098e-17
     [3584,] 1.218805e+03 0.00006837 -8.976e-17
     [3585,] 1.222169e+03 0.00006818 -1.545e-17
     [3586,] 1.225544e+03 0.00006800 -2.036e-17
     [3587,] 1.228927e+03 0.00006781 -5.858e-17
     [3588,] 1.232320e+03 0.00006762 -9.189e-17
     [3589,] 1.235722e+03 0.00006744 -7.149e-17
     [3590,] 1.239134e+03 0.00006725 9.643e-17
     [3591,] 1.242554e+03 0.00006707 -8.651e-17
     [3592,] 1.245985e+03 0.00006688 7.814e-17
     [3593,] 1.249425e+03 0.00006670 4.397e-17
     [3594,] 1.252874e+03 0.00006651 -3.185e-17
     [3595,] 1.256333e+03 0.00006633 4.951e-17
     [3596,] 1.259801e+03 0.00006615 -1.664e-16
     [3597,] 1.263280e+03 0.00006597 -6.821e-17
     [3598,] 1.266767e+03 0.00006578 -8.587e-17
     [3599,] 1.270264e+03 0.00006560 -5.833e-17
     [3600,] 1.273771e+03 0.00006542 -1.19e-16
     [3601,] 1.277288e+03 0.00006524 -6.994e-17
     [3602,] 1.280814e+03 0.00006506 -2.973e-17
     [3603,] 1.284350e+03 0.00006488 -9.017e-17
     [3604,] 1.287896e+03 0.00006471 -4.654e-17
     [3605,] 1.291452e+03 0.00006453 -1.275e-16
     [3606,] 1.295017e+03 0.00006435 -7.327e-17
     [3607,] 1.298592e+03 0.00006417 -7.18e-17
     [3608,] 1.302177e+03 0.00006400 -1.443e-17
     [3609,] 1.305772e+03 0.00006382 -5.26e-17
     [3610,] 1.309377e+03 0.00006364 -5.119e-17
     [3611,] 1.312992e+03 0.00006347 8.597e-18
     [3612,] 1.316617e+03 0.00006329 -2.577e-18
     [3613,] 1.320252e+03 0.00006312 -1.754e-16
     [3614,] 1.323897e+03 0.00006295 -2.514e-18
     [3615,] 1.327552e+03 0.00006277 -1.007e-16
     [3616,] 1.331217e+03 0.00006260 -4.041e-17
     [3617,] 1.334892e+03 0.00006243 -1.074e-16
     [3618,] 1.338577e+03 0.00006226 -3.49e-17
     [3619,] 1.342273e+03 0.00006208 -1.103e-16
     [3620,] 1.345979e+03 0.00006191 -1.983e-16
     [3621,] 1.349695e+03 0.00006174 -5.009e-17
     [3622,] 1.353421e+03 0.00006157 -5.021e-17
     [3623,] 1.357157e+03 0.00006140 -9.781e-17
     [3624,] 1.360904e+03 0.00006123 -8.599e-18
     [3625,] 1.364661e+03 0.00006107 -1.226e-16
     [3626,] 1.368429e+03 0.00006090 1.292e-17
     [3627,] 1.372207e+03 0.00006073 -4.177e-17
     [3628,] 1.375995e+03 0.00006056 -1.236e-16
     [3629,] 1.379794e+03 0.00006040 -7.051e-17
     [3630,] 1.383603e+03 0.00006023 -5.291e-17
     [3631,] 1.387423e+03 0.00006006 -1.394e-16
     [3632,] 1.391253e+03 0.00005990 -1.138e-16
     [3633,] 1.395094e+03 0.00005973 1.939e-17
     [3634,] 1.398946e+03 0.00005957 -2.074e-17
     [3635,] 1.402808e+03 0.00005940 -1.164e-16
     [3636,] 1.406681e+03 0.00005924 -1.161e-16
     [3637,] 1.410564e+03 0.00005908 7.402e-18
     [3638,] 1.414459e+03 0.00005892 -1.71e-17
     [3639,] 1.418364e+03 0.00005875 1.1e-17
     [3640,] 1.422279e+03 0.00005859 -5.402e-17
     [3641,] 1.426206e+03 0.00005843 -6.225e-17
     [3642,] 1.430143e+03 0.00005827 -7.527e-17
     [3643,] 1.434092e+03 0.00005811 -4.165e-18
     [3644,] 1.438051e+03 0.00005795 -1.201e-16
     [3645,] 1.442021e+03 0.00005779 -7.807e-17
     [3646,] 1.446002e+03 0.00005763 -7.517e-17
     [3647,] 1.449994e+03 0.00005747 -5.211e-17
     [3648,] 1.453997e+03 0.00005731 -1.129e-16
     [3649,] 1.458011e+03 0.00005716 -5.893e-17
     [3650,] 1.462037e+03 0.00005700 -1.521e-16
     [3651,] 1.466073e+03 0.00005684 -1.752e-16
     [3652,] 1.470120e+03 0.00005668 -1.403e-16
     [3653,] 1.474179e+03 0.00005653 -7.47e-17
     [3654,] 1.478249e+03 0.00005637 -4.069e-17
     [3655,] 1.482330e+03 0.00005622 2.202e-17
     [3656,] 1.486422e+03 0.00005606 -1.237e-16
     [3657,] 1.490526e+03 0.00005591 -3.206e-17
     [3658,] 1.494641e+03 0.00005575 3.91e-17
     [3659,] 1.498768e+03 0.00005560 -1.702e-16
     [3660,] 1.502905e+03 0.00005545 9.242e-18
     [3661,] 1.507054e+03 0.00005530 -2.625e-17
     [3662,] 1.511215e+03 0.00005514 -6.395e-17
     [3663,] 1.515387e+03 0.00005499 -3.858e-17
     [3664,] 1.519571e+03 0.00005484 -2.754e-17
     [3665,] 1.523766e+03 0.00005469 -3.004e-17
     [3666,] 1.527973e+03 0.00005454 -5.85e-17
     [3667,] 1.532191e+03 0.00005439 -8.412e-17
     [3668,] 1.536421e+03 0.00005424 -8.455e-17
     [3669,] 1.540663e+03 0.00005409 -4.154e-17
     [3670,] 1.544916e+03 0.00005394 6.394e-17
     [3671,] 1.549181e+03 0.00005379 -7.244e-20
     [3672,] 1.553458e+03 0.00005364 -1.398e-16
     [3673,] 1.557747e+03 0.00005350 -8.396e-17
     [3674,] 1.562048e+03 0.00005335 -8.01e-17
     [3675,] 1.566360e+03 0.00005320 3.27e-18
     [3676,] 1.570685e+03 0.00005306 -8.454e-17
     [3677,] 1.575021e+03 0.00005291 -9.309e-17
     [3678,] 1.579369e+03 0.00005276 3.71e-18
     [3679,] 1.583729e+03 0.00005262 -1.028e-16
     [3680,] 1.588102e+03 0.00005247 -3.304e-17
     [3681,] 1.592486e+03 0.00005233 1.414e-17
     [3682,] 1.596883e+03 0.00005219 4.96e-17
     [3683,] 1.601291e+03 0.00005204 -1.989e-17
     [3684,] 1.605712e+03 0.00005190 -1.148e-16
     [3685,] 1.610145e+03 0.00005176 -9.93e-17
     [3686,] 1.614590e+03 0.00005161 6.555e-17
     [3687,] 1.619048e+03 0.00005147 -4.606e-17
     [3688,] 1.623518e+03 0.00005133 -1.228e-16
     [3689,] 1.628000e+03 0.00005119 -3.384e-17
     [3690,] 1.632494e+03 0.00005105 -5.306e-17
     [3691,] 1.637001e+03 0.00005091 -5.957e-17
     [3692,] 1.641521e+03 0.00005077 -1.269e-16
     [3693,] 1.646053e+03 0.00005063 -1.347e-18
     [3694,] 1.650597e+03 0.00005049 -6.426e-17
     [3695,] 1.655154e+03 0.00005035 -1.485e-17
     [3696,] 1.659723e+03 0.00005021 -8.448e-17
     [3697,] 1.664305e+03 0.00005007 -8.628e-17
     [3698,] 1.668900e+03 0.00004993 1.57e-17
     [3699,] 1.673508e+03 0.00004980 -1.264e-16
     [3700,] 1.678128e+03 0.00004966 -4.379e-17
     [3701,] 1.682761e+03 0.00004952 -1.681e-16
     [3702,] 1.687406e+03 0.00004939 -7.267e-17
     [3703,] 1.692065e+03 0.00004925 -4.469e-17
     [3704,] 1.696736e+03 0.00004911 1.699e-18
     [3705,] 1.701421e+03 0.00004898 -8.43e-17
     [3706,] 1.706118e+03 0.00004884 1.148e-17
     [3707,] 1.710828e+03 0.00004871 5.592e-17
     [3708,] 1.715551e+03 0.00004858 -1.781e-16
     [3709,] 1.720288e+03 0.00004844 -1.004e-16
     [3710,] 1.725037e+03 0.00004831 -7.922e-17
     [3711,] 1.729799e+03 0.00004818 -9.019e-17
     [3712,] 1.734575e+03 0.00004804 -8.536e-17
     [3713,] 1.739364e+03 0.00004791 -1.432e-16
     [3714,] 1.744166e+03 0.00004778 -3.821e-17
     [3715,] 1.748981e+03 0.00004765 -1.478e-16
     [3716,] 1.753809e+03 0.00004752 -7.768e-17
     [3717,] 1.758651e+03 0.00004738 -1.376e-16
     [3718,] 1.763507e+03 0.00004725 -4.8e-17
     [3719,] 1.768375e+03 0.00004712 -1.547e-17
     [3720,] 1.773257e+03 0.00004699 -1.38e-16
     [3721,] 1.778153e+03 0.00004687 -1.882e-17
     [3722,] 1.783062e+03 0.00004674 9.053e-17
     [3723,] 1.787985e+03 0.00004661 -4.799e-17
     [3724,] 1.792921e+03 0.00004648 -1.432e-16
     [3725,] 1.797871e+03 0.00004635 -1.745e-16
     [3726,] 1.802834e+03 0.00004622 -4.057e-17
     [3727,] 1.807811e+03 0.00004610 5.468e-17
     [3728,] 1.812802e+03 0.00004597 8.185e-17
     [3729,] 1.817807e+03 0.00004584 2.446e-17
     [3730,] 1.822826e+03 0.00004572 -3.867e-17
     [3731,] 1.827858e+03 0.00004559 -1.978e-17
     [3732,] 1.832904e+03 0.00004547 -1.174e-16
     [3733,] 1.837965e+03 0.00004534 -1.222e-16
     [3734,] 1.843039e+03 0.00004522 1.095e-17
     [3735,] 1.848127e+03 0.00004509 2.118e-17
     [3736,] 1.853229e+03 0.00004497 -1.28e-16
     [3737,] 1.858346e+03 0.00004484 -1.205e-17
     [3738,] 1.863476e+03 0.00004472 -7.78e-17
     [3739,] 1.868621e+03 0.00004460 -7.91e-17
     [3740,] 1.873779e+03 0.00004447 -1.533e-16
     [3741,] 1.878953e+03 0.00004435 -6.876e-17
     [3742,] 1.884140e+03 0.00004423 3.756e-17
     [3743,] 1.889342e+03 0.00004411 -1.339e-16
     [3744,] 1.894558e+03 0.00004399 -5.592e-17
     [3745,] 1.899788e+03 0.00004386 -1.816e-16
     [3746,] 1.905033e+03 0.00004374 -4.077e-17
     [3747,] 1.910292e+03 0.00004362 -1.185e-16
     [3748,] 1.915566e+03 0.00004350 8.353e-17
     [3749,] 1.920855e+03 0.00004338 -1.96e-17
     [3750,] 1.926158e+03 0.00004326 4.506e-17
     [3751,] 1.931475e+03 0.00004314 -1.721e-16
     [3752,] 1.936808e+03 0.00004303 -4.33e-17
     [3753,] 1.942155e+03 0.00004291 -7.382e-17
     [3754,] 1.947517e+03 0.00004279 -1.666e-16
     [3755,] 1.952893e+03 0.00004267 -8.824e-17
     [3756,] 1.958285e+03 0.00004255 -5.414e-17
     [3757,] 1.963691e+03 0.00004244 -4.423e-17
     [3758,] 1.969112e+03 0.00004232 -7.708e-17
     [3759,] 1.974549e+03 0.00004220 -6.857e-17
     [3760,] 1.980000e+03 0.00004209 -2.063e-17
     [3761,] 1.985466e+03 0.00004197 -5.418e-17
     [3762,] 1.990948e+03 0.00004186 2.622e-17
     [3763,] 1.996444e+03 0.00004174 5.325e-17
     [3764,] 2.001956e+03 0.00004163 2.516e-17
     [3765,] 2.007483e+03 0.00004151 -5.529e-17
     [3766,] 2.013025e+03 0.00004140 -1.241e-16
     [3767,] 2.018583e+03 0.00004128 -1.264e-16
     [3768,] 2.024155e+03 0.00004117 -1.83e-16
     [3769,] 2.029744e+03 0.00004106 -1.265e-17
     [3770,] 2.035347e+03 0.00004094 -1.199e-16
     [3771,] 2.040967e+03 0.00004083 3.137e-17
     [3772,] 2.046601e+03 0.00004072 6.408e-17
     [3773,] 2.052251e+03 0.00004061 -1.794e-16
     [3774,] 2.057917e+03 0.00004049 -1.398e-16
     [3775,] 2.063599e+03 0.00004038 -1.53e-16
     [3776,] 2.069296e+03 0.00004027 -1.067e-16
     [3777,] 2.075009e+03 0.00004016 -3.429e-17
     [3778,] 2.080737e+03 0.00004005 2.818e-17
     [3779,] 2.086482e+03 0.00003994 -3.002e-17
     [3780,] 2.092242e+03 0.00003983 -1.098e-16
     [3781,] 2.098018e+03 0.00003972 -8.385e-17
     [3782,] 2.103810e+03 0.00003961 -1.109e-16
     [3783,] 2.109618e+03 0.00003950 -5.542e-17
     [3784,] 2.115443e+03 0.00003939 -4.32e-17
     [3785,] 2.121283e+03 0.00003928 -4.265e-17
     [3786,] 2.127139e+03 0.00003918 -2.706e-17
     [3787,] 2.133012e+03 0.00003907 -9.061e-17
     [3788,] 2.138901e+03 0.00003896 -4.783e-17
     [3789,] 2.144806e+03 0.00003885 4.278e-17
     [3790,] 2.150727e+03 0.00003875 -8.23e-17
     [3791,] 2.156665e+03 0.00003864 3.203e-17
     [3792,] 2.162619e+03 0.00003853 -1.468e-16
     [3793,] 2.168589e+03 0.00003843 -1.271e-16
     [3794,] 2.174576e+03 0.00003832 1.288e-17
     [3795,] 2.180580e+03 0.00003822 -2.009e-16
     [3796,] 2.186600e+03 0.00003811 -1.604e-16
     [3797,] 2.192636e+03 0.00003801 -1.649e-16
     [3798,] 2.198690e+03 0.00003790 9.436e-17
     [3799,] 2.204760e+03 0.00003780 -1.263e-16
     [3800,] 2.210847e+03 0.00003769 -5.122e-17
     [3801,] 2.216950e+03 0.00003759 -1.515e-17
     [3802,] 2.223071e+03 0.00003749 -6.323e-18
     [3803,] 2.229208e+03 0.00003738 -2.742e-17
     [3804,] 2.235362e+03 0.00003728 -1.252e-16
     [3805,] 2.241534e+03 0.00003718 -1.667e-16
     [3806,] 2.247722e+03 0.00003707 -2.962e-17
     [3807,] 2.253928e+03 0.00003697 -7.133e-17
     [3808,] 2.260150e+03 0.00003687 -8.941e-17
     [3809,] 2.266390e+03 0.00003677 -4.322e-17
     [3810,] 2.272647e+03 0.00003667 -1.375e-17
     [3811,] 2.278921e+03 0.00003657 -9.648e-17
     [3812,] 2.285213e+03 0.00003647 8.282e-18
     [3813,] 2.291522e+03 0.00003637 -1.517e-16
     [3814,] 2.297848e+03 0.00003627 4.639e-17
     [3815,] 2.304192e+03 0.00003617 -2.149e-16
     [3816,] 2.310553e+03 0.00003607 -4.747e-17
     [3817,] 2.316932e+03 0.00003597 3.533e-17
     [3818,] 2.323329e+03 0.00003587 -6.234e-17
     [3819,] 2.329743e+03 0.00003577 -1.657e-16
     [3820,] 2.336175e+03 0.00003567 -1.056e-16
     [3821,] 2.342624e+03 0.00003557 -7.014e-17
     [3822,] 2.349092e+03 0.00003547 4.553e-17
     [3823,] 2.355577e+03 0.00003538 -1.434e-16
     [3824,] 2.362080e+03 0.00003528 -9.902e-17
     [3825,] 2.368602e+03 0.00003518 5.665e-17
     [3826,] 2.375141e+03 0.00003509 -3.357e-17
     [3827,] 2.381698e+03 0.00003499 -6.653e-17
     [3828,] 2.388273e+03 0.00003489 -3.208e-17
     [3829,] 2.394867e+03 0.00003480 -1.136e-16
     [3830,] 2.401478e+03 0.00003470 8.225e-17
     [3831,] 2.408108e+03 0.00003461 -1.761e-16
     [3832,] 2.414757e+03 0.00003451 -1.53e-17
     [3833,] 2.421423e+03 0.00003442 -7.309e-17
     [3834,] 2.428108e+03 0.00003432 -3.593e-18
     [3835,] 2.434812e+03 0.00003423 -2.661e-17
     [3836,] 2.441534e+03 0.00003413 -4.315e-17
     [3837,] 2.448274e+03 0.00003404 -3.709e-18
     [3838,] 2.455033e+03 0.00003394 9.43e-17
     [3839,] 2.461811e+03 0.00003385 6.451e-17
     [3840,] 2.468608e+03 0.00003376 -1.044e-16
     [3841,] 2.475423e+03 0.00003366 -1.568e-17
     [3842,] 2.482257e+03 0.00003357 3.081e-17
     [3843,] 2.489110e+03 0.00003348 -1.407e-16
     [3844,] 2.495982e+03 0.00003339 -2.143e-17
     [3845,] 2.502872e+03 0.00003330 -1.687e-16
     [3846,] 2.509782e+03 0.00003320 -1.942e-16
     [3847,] 2.516711e+03 0.00003311 -1.674e-16
     [3848,] 2.523659e+03 0.00003302 -3.108e-17
     [3849,] 2.530627e+03 0.00003293 -5.116e-18
     [3850,] 2.537613e+03 0.00003284 1.024e-16
     [3851,] 2.544619e+03 0.00003275 -6.132e-17
     [3852,] 2.551644e+03 0.00003266 -2.067e-17
     [3853,] 2.558688e+03 0.00003257 -1.49e-16
     [3854,] 2.565752e+03 0.00003248 -2.265e-18
     [3855,] 2.572836e+03 0.00003239 -1.26e-16
     [3856,] 2.579939e+03 0.00003230 -1.5e-16
     [3857,] 2.587062e+03 0.00003221 -3.873e-17
     [3858,] 2.594204e+03 0.00003212 -1.138e-16
     [3859,] 2.601366e+03 0.00003203 2.455e-17
     [3860,] 2.608548e+03 0.00003195 -1.328e-16
     [3861,] 2.615749e+03 0.00003186 -1.788e-16
     [3862,] 2.622971e+03 0.00003177 2.765e-17
     [3863,] 2.630212e+03 0.00003168 -1.051e-16
     [3864,] 2.637474e+03 0.00003160 -8.401e-17
     [3865,] 2.644755e+03 0.00003151 -1.15e-17
     [3866,] 2.652057e+03 0.00003142 -1.428e-17
     [3867,] 2.659378e+03 0.00003134 -6.852e-17
     [3868,] 2.666720e+03 0.00003125 -1.503e-16
     [3869,] 2.674082e+03 0.00003116 -1.898e-16
     [3870,] 2.681465e+03 0.00003108 -2.05e-16
     [3871,] 2.688868e+03 0.00003099 -1.661e-16
     [3872,] 2.696291e+03 0.00003091 -1.44e-16
     [3873,] 2.703735e+03 0.00003082 -1.424e-16
     [3874,] 2.711199e+03 0.00003074 -5.327e-17
     [3875,] 2.718684e+03 0.00003065 -4.684e-17
     [3876,] 2.726190e+03 0.00003057 -8.534e-17
     [3877,] 2.733716e+03 0.00003048 2.874e-17
     [3878,] 2.741264e+03 0.00003040 -4.514e-17
     [3879,] 2.748832e+03 0.00003032 -4.852e-17
     [3880,] 2.756421e+03 0.00003023 -9.1e-17
     [3881,] 2.764030e+03 0.00003015 -3.573e-17
     [3882,] 2.771661e+03 0.00003007 -7.354e-17
     [3883,] 2.779313e+03 0.00002998 -1.243e-16
     [3884,] 2.786986e+03 0.00002990 -1.503e-17
     [3885,] 2.794680e+03 0.00002982 -1.47e-16
     [3886,] 2.802396e+03 0.00002974 -1.236e-16
     [3887,] 2.810133e+03 0.00002965 -5.11e-17
     [3888,] 2.817891e+03 0.00002957 -7.118e-17
     [3889,] 2.825670e+03 0.00002949 -6.658e-17
     [3890,] 2.833471e+03 0.00002941 -8.621e-17
     [3891,] 2.841294e+03 0.00002933 -4.303e-17
     [3892,] 2.849138e+03 0.00002925 9.666e-18
     [3893,] 2.857004e+03 0.00002917 -9.295e-18
     [3894,] 2.864891e+03 0.00002909 -1.061e-16
     [3895,] 2.872801e+03 0.00002901 -9.266e-17
     [3896,] 2.880732e+03 0.00002893 -7.724e-17
     [3897,] 2.888685e+03 0.00002885 -8.863e-17
     [3898,] 2.896660e+03 0.00002877 -1.62e-16
     [3899,] 2.904657e+03 0.00002869 -1.184e-16
     [3900,] 2.912676e+03 0.00002861 -2.713e-17
     [3901,] 2.920717e+03 0.00002853 -1.873e-17
     [3902,] 2.928781e+03 0.00002845 6.231e-18
     [3903,] 2.936866e+03 0.00002837 -4.134e-17
     [3904,] 2.944974e+03 0.00002830 9.059e-18
     [3905,] 2.953105e+03 0.00002822 -3.359e-17
     [3906,] 2.961258e+03 0.00002814 -1.068e-16
     [3907,] 2.969433e+03 0.00002806 -1.376e-16
     [3908,] 2.977631e+03 0.00002799 -1.098e-16
     [3909,] 2.985852e+03 0.00002791 -8.982e-17
     [3910,] 2.994095e+03 0.00002783 -1.466e-16
     [3911,] 3.002361e+03 0.00002776 -1.928e-17
     [3912,] 3.010650e+03 0.00002768 -5.71e-17
     [3913,] 3.018961e+03 0.00002760 -1.69e-17
     [3914,] 3.027296e+03 0.00002753 5.728e-17
     [3915,] 3.035654e+03 0.00002745 -5.086e-17
     [3916,] 3.044034e+03 0.00002738 -9.653e-17
     [3917,] 3.052438e+03 0.00002730 -6.01e-17
     [3918,] 3.060865e+03 0.00002723 -9.807e-17
     [3919,] 3.069316e+03 0.00002715 -7.126e-17
     [3920,] 3.077789e+03 0.00002708 -7.521e-17
     [3921,] 3.086287e+03 0.00002700 -6.537e-17
     [3922,] 3.094807e+03 0.00002693 -3.102e-17
     [3923,] 3.103351e+03 0.00002685 8.157e-18
     [3924,] 3.111919e+03 0.00002678 -1.65e-16
     [3925,] 3.120510e+03 0.00002671 3.413e-17
     [3926,] 3.129125e+03 0.00002663 -2.298e-17
     [3927,] 3.137764e+03 0.00002656 -3.973e-17
     [3928,] 3.146427e+03 0.00002649 -8.173e-17
     [3929,] 3.155113e+03 0.00002641 -9.081e-17
     [3930,] 3.163824e+03 0.00002634 -6.771e-17
     [3931,] 3.172558e+03 0.00002627 -1.732e-16
     [3932,] 3.181317e+03 0.00002619 -7.4e-17
     [3933,] 3.190100e+03 0.00002612 -1.064e-16
     [3934,] 3.198907e+03 0.00002605 -7.915e-17
     [3935,] 3.207738e+03 0.00002598 -2.359e-17
     [3936,] 3.216594e+03 0.00002591 3.617e-17
     [3937,] 3.225475e+03 0.00002584 -5.183e-17
     [3938,] 3.234379e+03 0.00002576 2.238e-17
     [3939,] 3.243309e+03 0.00002569 -3.87e-17
     [3940,] 3.252263e+03 0.00002562 5.682e-17
     [3941,] 3.261241e+03 0.00002555 -1.871e-16
     [3942,] 3.270245e+03 0.00002548 -7.423e-17
     [3943,] 3.279273e+03 0.00002541 4.821e-17
     [3944,] 3.288327e+03 0.00002534 -3.775e-17
     [3945,] 3.297405e+03 0.00002527 -1.375e-16
     [3946,] 3.306508e+03 0.00002520 -1.905e-16
     [3947,] 3.315637e+03 0.00002513 -7.664e-17
     [3948,] 3.324791e+03 0.00002506 -1.868e-16
     [3949,] 3.333970e+03 0.00002500 -7.517e-18
     [3950,] 3.343174e+03 0.00002493 -7.008e-18
     [3951,] 3.352404e+03 0.00002486 -2.239e-16
     [3952,] 3.361659e+03 0.00002479 -2.46e-16
     [3953,] 3.370940e+03 0.00002472 -8.345e-17
     [3954,] 3.380246e+03 0.00002465 -1.515e-16
     [3955,] 3.389578e+03 0.00002459 -2.221e-16
     [3956,] 3.398936e+03 0.00002452 -1.989e-16
     [3957,] 3.408320e+03 0.00002445 -1.686e-16
     [3958,] 3.417729e+03 0.00002438 -2.022e-16
     [3959,] 3.427165e+03 0.00002432 -1.277e-16
     [3960,] 3.436627e+03 0.00002425 -1.29e-16
     [3961,] 3.446114e+03 0.00002418 -8.84e-17
     [3962,] 3.455628e+03 0.00002412 -2.065e-16
     [3963,] 3.465168e+03 0.00002405 -1.83e-16
     [3964,] 3.474735e+03 0.00002398 -8.013e-17
     [3965,] 3.484328e+03 0.00002392 -6.687e-17
     [3966,] 3.493947e+03 0.00002385 -1.904e-16
     [3967,] 3.503593e+03 0.00002379 -1.784e-16
     [3968,] 3.513266e+03 0.00002372 -6.836e-17
     [3969,] 3.522965e+03 0.00002365 -5.854e-17
     [3970,] 3.532691e+03 0.00002359 -7.628e-17
     [3971,] 3.542444e+03 0.00002352 -1.713e-16
     [3972,] 3.552224e+03 0.00002346 -1.799e-17
     [3973,] 3.562031e+03 0.00002339 -5.029e-17
     [3974,] 3.571865e+03 0.00002333 -1.563e-16
     [3975,] 3.581726e+03 0.00002327 -9.322e-17
     [3976,] 3.591614e+03 0.00002320 -3.243e-17
     [3977,] 3.601530e+03 0.00002314 -1.165e-16
     [3978,] 3.611473e+03 0.00002307 -1.538e-16
     [3979,] 3.621444e+03 0.00002301 -1.074e-16
     [3980,] 3.631442e+03 0.00002295 -9.083e-17
     [3981,] 3.641467e+03 0.00002288 -2.047e-16
     [3982,] 3.651520e+03 0.00002282 -9.817e-17
     [3983,] 3.661601e+03 0.00002276 -1.738e-16
     [3984,] 3.671710e+03 0.00002270 -5.416e-17
     [3985,] 3.681847e+03 0.00002263 -7.673e-17
     [3986,] 3.692012e+03 0.00002257 -1.504e-16
     [3987,] 3.702205e+03 0.00002251 -1.021e-16
     [3988,] 3.712425e+03 0.00002245 -1.176e-16
     [3989,] 3.722675e+03 0.00002239 -3.748e-17
     [3990,] 3.732952e+03 0.00002232 -1.269e-16
     [3991,] 3.743258e+03 0.00002226 -9.194e-17
     [3992,] 3.753592e+03 0.00002220 -5.19e-17
     [3993,] 3.763955e+03 0.00002214 -2.043e-18
     [3994,] 3.774346e+03 0.00002208 -1.161e-16
     [3995,] 3.784767e+03 0.00002202 -1.667e-16
     [3996,] 3.795215e+03 0.00002196 -3.703e-17
     [3997,] 3.805693e+03 0.00002190 -2.044e-16
     [3998,] 3.816200e+03 0.00002184 -1.83e-16
     [3999,] 3.826735e+03 0.00002178 -6.466e-17
     [4000,] 3.837300e+03 0.00002172 -1.668e-17
     [4001,] 3.847894e+03 0.00002166 -1.121e-16
     [4002,] 3.858517e+03 0.00002160 -2.22e-16
     [4003,] 3.869170e+03 0.00002154 -1.216e-16
     [4004,] 3.879852e+03 0.00002148 -7.758e-17
     [4005,] 3.890563e+03 0.00002142 -2.035e-16
     [4006,] 3.901304e+03 0.00002136 -8.265e-17
     [4007,] 3.912075e+03 0.00002130 -1.707e-16
     [4008,] 3.922875e+03 0.00002124 -2.187e-16
     [4009,] 3.933705e+03 0.00002118 -1.613e-16
     [4010,] 3.944565e+03 0.00002113 -1.033e-16
     [4011,] 3.955455e+03 0.00002107 -4.871e-17
     [4012,] 3.966375e+03 0.00002101 -8.547e-17
     [4013,] 3.977326e+03 0.00002095 -6.591e-17
     [4014,] 3.988306e+03 0.00002089 -1.161e-16
     [4015,] 3.999317e+03 0.00002084 -2.176e-16
     [4016,] 4.010358e+03 0.00002078 -9.896e-17
     [4017,] 4.021430e+03 0.00002072 -2.761e-17
     [4018,] 4.032532e+03 0.00002067 -2.111e-16
     [4019,] 4.043665e+03 0.00002061 -2.239e-16
     [4020,] 4.054828e+03 0.00002055 -1.33e-16
     [4021,] 4.066023e+03 0.00002050 -1.28e-16
     [4022,] 4.077248e+03 0.00002044 -3.278e-17
     [4023,] 4.088505e+03 0.00002038 -1.874e-16
     [4024,] 4.099792e+03 0.00002033 -1.027e-16
     [4025,] 4.111111e+03 0.00002027 -1.565e-16
     [4026,] 4.122460e+03 0.00002021 -8.387e-18
     [4027,] 4.133842e+03 0.00002016 -1.622e-16
     [4028,] 4.145254e+03 0.00002010 -8.65e-17
     [4029,] 4.156698e+03 0.00002005 -1.526e-16
     [4030,] 4.168174e+03 0.00001999 -3.823e-17
     [4031,] 4.179681e+03 0.00001994 -7.698e-17
     [4032,] 4.191221e+03 0.00001988 -2.121e-17
     [4033,] 4.202792e+03 0.00001983 2.608e-18
     [4034,] 4.214394e+03 0.00001977 -6.998e-17
     [4035,] 4.226029e+03 0.00001972 -7.092e-18
     [4036,] 4.237697e+03 0.00001966 -1.532e-16
     [4037,] 4.249396e+03 0.00001961 -1.991e-16
     [4038,] 4.261128e+03 0.00001956 -1.183e-16
     [4039,] 4.272892e+03 0.00001950 -4.438e-17
     [4040,] 4.284688e+03 0.00001945 -1.07e-17
     [4041,] 4.296517e+03 0.00001940 -2.231e-17
     [4042,] 4.308379e+03 0.00001934 -1.759e-17
     [4043,] 4.320273e+03 0.00001929 3.073e-17
     [4044,] 4.332200e+03 0.00001924 -1.112e-16
     [4045,] 4.344161e+03 0.00001918 -2.853e-17
     [4046,] 4.356154e+03 0.00001913 -3.555e-17
     [4047,] 4.368180e+03 0.00001908 -2.883e-17
     [4048,] 4.380240e+03 0.00001902 -3.857e-17
     [4049,] 4.392333e+03 0.00001897 1.474e-17
     [4050,] 4.404459e+03 0.00001892 -1.236e-16
     [4051,] 4.416619e+03 0.00001887 -3.911e-17
     [4052,] 4.428812e+03 0.00001882 -4.843e-17
     [4053,] 4.441039e+03 0.00001876 -3.831e-17
     [4054,] 4.453299e+03 0.00001871 -4.747e-17
     [4055,] 4.465594e+03 0.00001866 5.526e-17
     [4056,] 4.477923e+03 0.00001861 6.7e-17
     [4057,] 4.490285e+03 0.00001856 -9.339e-17
     [4058,] 4.502682e+03 0.00001851 -2.023e-18
     [4059,] 4.515113e+03 0.00001846 -1.519e-16
     [4060,] 4.527578e+03 0.00001841 -1.627e-16
     [4061,] 4.540077e+03 0.00001836 -1.978e-16
     [4062,] 4.552611e+03 0.00001830 -1.005e-16
     [4063,] 4.565180e+03 0.00001825 -1.556e-16
     [4064,] 4.577784e+03 0.00001820 -1.269e-17
     [4065,] 4.590422e+03 0.00001815 -8.607e-17
     [4066,] 4.603095e+03 0.00001810 -5.355e-17
     [4067,] 4.615803e+03 0.00001805 -2.019e-16
     [4068,] 4.628546e+03 0.00001800 -2.226e-16
     [4069,] 4.641325e+03 0.00001795 -5.26e-17
     [4070,] 4.654138e+03 0.00001791 -6.697e-17
     [4071,] 4.666987e+03 0.00001786 2.034e-18
     [4072,] 4.679872e+03 0.00001781 -1.175e-16
     [4073,] 4.692792e+03 0.00001776 6.692e-18
     [4074,] 4.705747e+03 0.00001771 -6.696e-17
     [4075,] 4.718739e+03 0.00001766 -8.089e-17
     [4076,] 4.731766e+03 0.00001761 -8.559e-17
     [4077,] 4.744830e+03 0.00001756 -4.276e-17
     [4078,] 4.757929e+03 0.00001751 -1.058e-16
     [4079,] 4.771065e+03 0.00001747 -4.105e-17
     [4080,] 4.784236e+03 0.00001742 -1.158e-16
     [4081,] 4.797445e+03 0.00001737 -1.687e-16
     [4082,] 4.810689e+03 0.00001732 6.829e-17
     [4083,] 4.823970e+03 0.00001727 -6.768e-17
     [4084,] 4.837288e+03 0.00001723 -5.583e-18
     [4085,] 4.850643e+03 0.00001718 -1.494e-16
     [4086,] 4.864034e+03 0.00001713 -1.535e-16
     [4087,] 4.877463e+03 0.00001709 -1.776e-16
     [4088,] 4.890929e+03 0.00001704 -1.214e-16
     [4089,] 4.904431e+03 0.00001699 3.946e-18
     [4090,] 4.917971e+03 0.00001694 4.615e-17
     [4091,] 4.931549e+03 0.00001690 -5.954e-17
     [4092,] 4.945164e+03 0.00001685 -9.589e-19
     [4093,] 4.958816e+03 0.00001681 -1.529e-17
     [4094,] 4.972506e+03 0.00001676 -6.325e-17
     [4095,] 4.986234e+03 0.00001671 -7.555e-17
     [4096,] 5.000000e+03 0.00001667 1.57e-17
     >
     > showProc.time()
     Time (user system elapsed): 47.06 0.19 48.27
     >
     > ## below, 7 "it's okay, but not perfect:" ===> need more terms in stirlerr() __or__ ??
     > ## April 20: MM added more terms up to S10
     > x <- sfsmisc::lseq(1, 7, length=2048)
     > system.time(stM <- DPQmpfr::stirlerrM(Rmpfr::mpfr(x,2048))) # 1.52 sec elapsed
     user system elapsed
     23.03 0.03 23.54
     > plot(x, stirlerr(x, use.halves=FALSE) - stM, type="l", log="x", main="absolute Error")
     > plot(x, stirlerr(x, use.halves=FALSE) / stM - 1, type="l", log="x", main="relative Error")
     > plot(x, abs(stirlerr(x, use.halves=FALSE) / stM - 1), type="l", log="xy",main="|relative Error|")
     > abline(h=c(1,2,4)*.Machine$double.eps, lty=3)
     > ## lgammacor() does *NOT* help, as it is *designed* for x >= 10!
     > lines(x, abs(lgammacor(x, 5) / stM - 1), col=2)
     > ## maybe look at it for x >= 9 or so ?
     > ##
     > ## ==> Need another chebyshev() or rational-approx. for x in [.1, 7] or so !!
     >
     > showProc.time()
     Time (user system elapsed): 23.65 0.04 24.18
     >
     > <0c>
     >
     >
     > ###--------------- bd0() & ebd0() ------------------------------------------------------
     >
     >
     > ## ebd0 constants: the column sums of "bd0_scale": log(n / 1024) for all these n
     > ## ---- according to the *comments* in the C code -- so here I test that at least the *sums* are correct
     > bd0.n <- c(2048,2032,2016,2001,1986,1971,1956,1942,1928,1913,1900,1886,1872,1859,
     + 1846,1833,1820,1808,1796,1783,1771,1759,1748,1736,1725,1713,1702,1691,
     + 1680,1670,1659,1649,1638,1628,1618,1608,1598,1589,1579,1570,1560,1551,
     + 1542,1533,1524,1515,1507,1498,1489,1481,1473,1464,1456,1448,1440,1432,
     + 1425,1417,1409,1402,1394,1387,1380,1372,1365,1358,1351,1344,1337,1331,
     + 1324,1317,1311,1304,1298,1291,1285,1279,1273,1266,1260,1254,1248,1242,
     + 1237,1231,1225,1219,1214,1208,1202,1197,1192,1186,1181,1176,1170,1165,
     + 1160,1155,1150,1145,1140,1135,1130,1125,1120,1116,1111,1106,1101,1097,
     + 1092,1088,1083,1079,1074,1070,1066,1061,1057,1053,1049,1044,1040,1036,
     + 1032,1028,1024)
     >
     > stopifnot(
     + all.equal(bd0.n,
     + 1024 * exp(colSums(DPQ:::logf_mat)))
     + ) ## on lynne (64-bit, Fedora 32, 2021) they are even *identical*
     > identical(bd0.n, 1024 * exp(colSums(DPQ:::logf_mat))) # amazingly to me
     [1] TRUE
     >
     > ## Also, the numbers themselves decrease monotonely,
     > ## their differences are close to, but *not* monotone:
     > diff(bd0.n) # -16 -16 -15 -15 -15 -15 -14 -14 -15 -13 -14 ...
     [1] -16 -16 -15 -15 -15 -15 -14 -14 -15 -13 -14 -14 -13 -13 -13 -13 -12 -12
     [19] -13 -12 -12 -11 -12 -11 -12 -11 -11 -11 -10 -11 -10 -11 -10 -10 -10 -10
     [37] -9 -10 -9 -10 -9 -9 -9 -9 -9 -8 -9 -9 -8 -8 -9 -8 -8 -8
     [55] -8 -7 -8 -8 -7 -8 -7 -7 -8 -7 -7 -7 -7 -7 -6 -7 -7 -6
     [73] -7 -6 -7 -6 -6 -6 -7 -6 -6 -6 -6 -5 -6 -6 -6 -5 -6 -6
     [91] -5 -5 -6 -5 -5 -6 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -4 -5
     [109] -5 -5 -4 -5 -4 -5 -4 -5 -4 -4 -5 -4 -4 -4 -5 -4 -4 -4
     [127] -4 -4
     > # ^^^^^^^^^^^^^^ (etc)
     >
     > if(do.pdf) { dev.off(); pdf("diff-bd0_tab.pdf") }
     >
     > plot(diff(bd0.n), type="b")
     > c2 <- adjustcolor(2, 1/2)
     > par(new=TRUE)
     > plot(diff(bd0.n, differences = 2), type="b", col=c2, axes=FALSE, ann=FALSE)
     > axis(4, at=-1:2, col=c2, col.axis=c2)
     >
     > showProc.time()
     Time (user system elapsed): 0.03 0 0.03
     >
     > ## close to over-/underflow -------
     >
     > ### Large lambda == np == M -------
     >
     > if(do.pdf) { dev.off(); pdf("stirlerr-bd0-ebd0.pdf") }
     > ##-- FIXME: use functionality from ~/R/MM/NUMERICS/dpq-functions/15628-dpois_raw_accuracy.R
     > ##-- ----- *or* move to vignette
     >
     > LL <- 1e20
     > dput(x1 <- 1e20 - 2e11) # 9.99999998e+19
     9.99999998e+19
     >
     > (P1 <- dpois (x1, LL)) # was 3.989455e-11; now 5.520993e-98
     [1] 5.520993e-98
     > (P1m <- Rmpfr::dpois(mpfr(x1, 128), LL)) # 5.52099285934214335003128935..e-98
     1 'mpfr' number of precision 128 bits
     [1] 5.520992859342143350031289352677120249641e-98
     > ## However -- the ebd0() version
     > (P1e <- dpois_raw(x1, LL, version="ebd0_v1"))
     [1] 5.520993e-98
     > ## was 3.989455e-11, but now good!
     > stopifnot(exprs = {
     + all.equal(P1 , 5.520992859342e-98, tol=1e-12)
     + all.equal(P1e, P1, tol=1e-12)
     + all.equal(P1m, P1, tol=1e-12)
     + })
     >
     > options(digits=9)
     >
     > ## indeed: regular bd0() works "ok" --- but ebd0() does non-sense !!
     > (bd.1 <- bd0(x1, LL, verbose=2))
     bd0(1e+20, 1e+20): T.series w/ 2 terms -> bd0=200
     [1] 199.999992
     > ## bd0(1e+20, 1e+20): T.series w/ 2 terms -> bd0=200
     > ## [1] 200
     > (bd.1M <- bd0(x1, mpfr(LL, 128), verbose=2))
     bd0(1e+20, 1e+20): T.series w/ 3 terms -> bd0=200
     1 'mpfr' number of precision 128 bits
     [1] 199.9999919413334091607468236761591740489
     > ## bd0(1e+20, 1e+20): T.series w/ 3 terms -> bd0=200
     > ## ---> 199.9999919413334091607468236761591740489
     > asNumeric(bd.1 / bd.1M - 1)# -1.82e-17 -- suggests bd0() is really accurate here
     [1] -1.8200191e-17
     > stopifnot(abs(bd.1 / bd.1M - 1) < 3e-16,
     + all.equal(199.999991941333, bd.1, tol=1e-14))
     >
     > ebd0(x1, LL, verbose=TRUE)# fixed since June 6, 2021
     ebd0(x=1e+20, M=1e+20): M/x = (r=0.500000001) * 2^(e=1); i=0,
     f=2048, fg=f*2^-(e+10)=1
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = 1.99999996304e-09
     1a. before adding -x * log1pmx(.) = -x * -2e-18 = 200
     1. after A.(-x*l..): yl,yh = ( -8.05867e-06, 200); yl+yh= 200
     ___ fg = 1 ___ skipping further steps
     [,1]
     yh 2.00000000e+02
     yl -8.05866662e-06
     >
     > showProc.time()
     Time (user system elapsed): 0.05 0 0.05
     >
     > ### Large x -- small np == M ------------------------------------
     >
     >
     > mpfrPrec <- 1024
     > mpfrPrec <- 256
     >
     > yy <- bd0 (1e307, 10^(-5:1), verbose=TRUE)
     > yhl <- ebd0 (1e307, 10^(-5:1), verbose=TRUE)
     ebd0(x=1e+307, M=1e-05): M/x = (r=0.736335108038475) * 2^(e=-1036); i=61,
     f=1387, fg=f*2^-(e+10)=Inf
     --> fg = +Inf --> return( +Inf )
     ebd0(x=1e+307, M=0.0001): M/x = (r=0.920418885049457) * 2^(e=-1033); i=108,
     f=1111, fg=f*2^-(e+10)=Inf
     --> fg = +Inf --> return( +Inf )
     ebd0(x=1e+307, M=0.001): M/x = (r=0.575261803155939) * 2^(e=-1029); i=19,
     f=1783, fg=f*2^-(e+10)=Inf
     --> fg = +Inf --> return( +Inf )
     ebd0(x=1e+307, M=0.01): M/x = (r=0.719077253944928) * 2^(e=-1026); i=56,
     f=1425, fg=f*2^-(e+10)=Inf
     --> fg = +Inf --> return( +Inf )
     ebd0(x=1e+307, M=0.1): M/x = (r=0.898846567431158) * 2^(e=-1023); i=102,
     f=1140, fg=f*2^-(e+10)=1.00067e+308
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.107312 -4.72853e-09 -4.29763e-16 5.35114e-24 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = 0.0006690301479688298
     1a. before adding -x * log1pmx(.) = -x * -2.23701e-07 = 2.23701e+300
     1. after A.(-x*l..): yl,yh = ( 0, 2.23701e+300); yl+yh= 2.23701e+300
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 1.07312e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=1): M/x = (r=0.561779104644474) * 2^(e=-1019); i=16,
     f=1820, fg=f*2^-(e+10)=9.98475e+306
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419479548646
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=10): M/x = (r=0.702223880805592) * 2^(e=-1016); i=52,
     f=1456, fg=f*2^-(e+10)=9.98475e+305
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.351976 2.85039e-08 -9.56643e-16 -6.4096e-24 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419479548646
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 3.51978e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     > yhlC<- ebd0C(1e307, 10^(-5:1))
     > stopifnot(yy == Inf, colSums(yhl) == Inf, yhlC == yhl)
     > yM <- bd0(mpfr(1e307, mpfrPrec), 10^(-5:1))
     > roundMpfr(range(yM), 12) ## 7.0363e+309 7.1739e+309 -- *are* larger than DBL_MAX
     2 'mpfr' numbers of precision 12 bits
     [1] 7.0363e+309 7.1739e+309
     >
     >
     > ### Now *BOTH* x and lambda are large : ---------------------------------------
     > ## (FIXME?? Small loss for ebd0, see below) <<< ???
     > ## is bd0(<mpfr>, *) really accurate ???
     > ## it uses it's own convergent series approxmation for |x-np| < .. ????
     >
     > x. <- 1e307
     > ebd0(x., 10^(300:308))
     [,1] [,2] [,3] [,4]
     yh 1.51180958e+308 1.28155116e+308 1.05129355e+308 8.21044037e+307
     yl 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
     [,5] [,6] [,7] [,8] [,9]
     yh 5.90875528e+307 3.61517019e+307 1.40258509e+307 0 6.69741491e+307
     yl 0.00000000e+00 0.00000000e+00 0.00000000e+00 0 0.00000000e+00
     >
     > stopifnot(is.finite(Llam <- 2^(990:1024 - 1e-12)))
     >
     > bd0ver <- function(x, np, mpfrPrec, chkVerb=TRUE, keepMpfr=FALSE) {
     + stopifnot(length(mpfrPrec <- as.integer(mpfrPrec)) == 1,
     + !is.na(mpfrPrec), mpfrPrec >= 64,
     + x >= 0, np >= 0)
     + yy <- bd0 (x, np)
     + yhl <- ebd0 (x, np)
     + yhlC <- ebd0C(x, np)
     + if(chkVerb) {
     + yhl. <- ebd0 (x, np, verbose=TRUE)
     + yhlC. <- ebd0C(x, np, verbose=TRUE)
     + stopifnot(identical(yhl., yhl),
     + identical(yhlC., yhlC))
     + }
     + epsC <- .Machine$double.eps
     + aeq0 <- all.equal(yhl, yhlC, tol = 0)
     + aeq4 <- all.equal(yhl, yhlC, tol = 4*epsC)
     + if(!isTRUE(aeq4)) warning("the C and R versions of ebd0() differ:", aeq4)
     + stopifnot(is.whole(yhl ["yh",]),
     + is.whole(yhlC["yh",]))
     + yM <- bd0(mpfr(x, mpfrPrec),
     + mpfr(np,mpfrPrec), verbose=chkVerb)# more accurate ! (?? always ??)
     + relE <- relErrV(target = yM, # the mpfr one
     + cbind(ebd0 = yhl ["yh",] + yhl ["yl",],
     + ebd0C= yhlC["yh",] + yhlC["yl",],
     + bd0 = yy))
     + relE <- structure(asNumeric(relE), dim=dim(relE), dimnames=dimnames(relE))
     + ## return:
     + list(x=x, np=np, bd0=yy, ebd0=yhl, ebd0C=yhlC,
     + bd0M=if(keepMpfr) yM, # <- expensive
     + aeq0=aeq0, aeq4=aeq4, relE = relE)
     + }
     >
     > bd0v.8 <- bd0ver(x., Llam, mpfrPrec = 256)
     ebd0(x=1e+307, M=1.0464e+298): M/x = (r=0.561779104644075) * 2^(e=-29); i=16,
     f=1820, fg=f*2^-(e+10)=9.54204e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=2.09279e+298): M/x = (r=0.561779104644075) * 2^(e=-28); i=16,
     f=1820, fg=f*2^-(e+10)=4.77102e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=4.18558e+298): M/x = (r=0.561779104644075) * 2^(e=-27); i=16,
     f=1820, fg=f*2^-(e+10)=2.38551e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=8.37116e+298): M/x = (r=0.561779104644075) * 2^(e=-26); i=16,
     f=1820, fg=f*2^-(e+10)=1.19276e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( NaN, Inf); yl+yh= NaN
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=1.67423e+299): M/x = (r=0.561779104644075) * 2^(e=-25); i=16,
     f=1820, fg=f*2^-(e+10)=5.96378e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=2: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=3: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=4: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     3. after ADD1(M): yl,yh = ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.69053e+308); yl+yh= 1.69053e+308
    
     ebd0(x=1e+307, M=3.34846e+299): M/x = (r=0.561779104644075) * 2^(e=-24); i=16,
     f=1820, fg=f*2^-(e+10)=2.98189e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=2: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=3: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=4: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     3. after ADD1(M): yl,yh = ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.62122e+308); yl+yh= 1.62122e+308
    
     ebd0(x=1e+307, M=6.69693e+299): M/x = (r=0.561779104644075) * 2^(e=-23); i=16,
     f=1820, fg=f*2^-(e+10)=1.49094e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=2: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=3: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=4: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     3. after ADD1(M): yl,yh = ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.5519e+308); yl+yh= 1.5519e+308
    
     ebd0(x=1e+307, M=1.33939e+300): M/x = (r=0.561779104644075) * 2^(e=-22); i=16,
     f=1820, fg=f*2^-(e+10)=7.45472e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=2: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=3: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=4: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     3. after ADD1(M): yl,yh = ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.48259e+308); yl+yh= 1.48259e+308
    
     ebd0(x=1e+307, M=2.67877e+300): M/x = (r=0.561779104644075) * 2^(e=-21); i=16,
     f=1820, fg=f*2^-(e+10)=3.72736e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=2: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=3: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=4: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     3. after ADD1(M): yl,yh = ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.41327e+308); yl+yh= 1.41327e+308
    
     ebd0(x=1e+307, M=5.35754e+300): M/x = (r=0.561779104644075) * 2^(e=-20); i=16,
     f=1820, fg=f*2^-(e+10)=1.86368e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=2: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=3: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=4: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     3. after ADD1(M): yl,yh = ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.34396e+308); yl+yh= 1.34396e+308
    
     ebd0(x=1e+307, M=1.07151e+301): M/x = (r=0.561779104644075) * 2^(e=-19); i=16,
     f=1820, fg=f*2^-(e+10)=931840
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=2: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=3: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=4: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     3. after ADD1(M): yl,yh = ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.27464e+308); yl+yh= 1.27464e+308
    
     ebd0(x=1e+307, M=2.14302e+301): M/x = (r=0.561779104644075) * 2^(e=-18); i=16,
     f=1820, fg=f*2^-(e+10)=465920
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=2: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=3: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=4: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     3. after ADD1(M): yl,yh = ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.20533e+308); yl+yh= 1.20533e+308
    
     ebd0(x=1e+307, M=4.28603e+301): M/x = (r=0.561779104644075) * 2^(e=-17); i=16,
     f=1820, fg=f*2^-(e+10)=232960
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=2: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=3: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=4: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     3. after ADD1(M): yl,yh = ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.13602e+308); yl+yh= 1.13602e+308
    
     ebd0(x=1e+307, M=8.57207e+301): M/x = (r=0.561779104644075) * 2^(e=-16); i=16,
     f=1820, fg=f*2^-(e+10)=116480
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=2: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=3: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=4: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     3. after ADD1(M): yl,yh = ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.0667e+308); yl+yh= 1.0667e+308
    
     ebd0(x=1e+307, M=1.71441e+302): M/x = (r=0.561779104644075) * 2^(e=-15); i=16,
     f=1820, fg=f*2^-(e+10)=58240
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=2: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=3: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=4: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     3. after ADD1(M): yl,yh = ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.97387e+307); yl+yh= 9.97387e+307
    
     ebd0(x=1e+307, M=3.42883e+302): M/x = (r=0.561779104644075) * 2^(e=-14); i=16,
     f=1820, fg=f*2^-(e+10)=29120
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=2: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=3: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=4: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     3. after ADD1(M): yl,yh = ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.28074e+307); yl+yh= 9.28074e+307
    
     ebd0(x=1e+307, M=6.85766e+302): M/x = (r=0.561779104644075) * 2^(e=-13); i=16,
     f=1820, fg=f*2^-(e+10)=14560
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=2: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=3: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=4: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     3. after ADD1(M): yl,yh = ( 0, 9.5861e+307); yl+yh= 9.5861e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 8.58763e+307); yl+yh= 8.58763e+307
    
     ebd0(x=1e+307, M=1.37153e+303): M/x = (r=0.561779104644075) * 2^(e=-12); i=16,
     f=1820, fg=f*2^-(e+10)=7280
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=2: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=3: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=4: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     3. after ADD1(M): yl,yh = ( 0, 8.89302e+307); yl+yh= 8.89302e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.89455e+307); yl+yh= 7.89455e+307
    
     ebd0(x=1e+307, M=2.74306e+303): M/x = (r=0.561779104644075) * 2^(e=-11); i=16,
     f=1820, fg=f*2^-(e+10)=3640
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=2: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=3: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=4: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     3. after ADD1(M): yl,yh = ( 0, 8.20001e+307); yl+yh= 8.20001e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.20154e+307); yl+yh= 7.20154e+307
    
     ebd0(x=1e+307, M=5.48612e+303): M/x = (r=0.561779104644075) * 2^(e=-10); i=16,
     f=1820, fg=f*2^-(e+10)=1820
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=2: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=3: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=4: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     3. after ADD1(M): yl,yh = ( 0, 7.50714e+307); yl+yh= 7.50714e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 6.50867e+307); yl+yh= 6.50867e+307
    
     ebd0(x=1e+307, M=1.09722e+304): M/x = (r=0.561779104644075) * 2^(e=-9); i=16,
     f=1820, fg=f*2^-(e+10)=910
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=2: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=3: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=4: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     3. after ADD1(M): yl,yh = ( 0, 6.81454e+307); yl+yh= 6.81454e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.81607e+307); yl+yh= 5.81607e+307
    
     ebd0(x=1e+307, M=2.19445e+304): M/x = (r=0.561779104644075) * 2^(e=-8); i=16,
     f=1820, fg=f*2^-(e+10)=455
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=2: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=3: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=4: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     3. after ADD1(M): yl,yh = ( 0, 6.12249e+307); yl+yh= 6.12249e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.12402e+307); yl+yh= 5.12402e+307
    
     ebd0(x=1e+307, M=4.3889e+304): M/x = (r=0.561779104644075) * 2^(e=-7); i=16,
     f=1820, fg=f*2^-(e+10)=227.5
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=2: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=3: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=4: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     3. after ADD1(M): yl,yh = ( 0, 5.43154e+307); yl+yh= 5.43154e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.43307e+307); yl+yh= 4.43307e+307
    
     ebd0(x=1e+307, M=8.7778e+304): M/x = (r=0.561779104644075) * 2^(e=-6); i=16,
     f=1820, fg=f*2^-(e+10)=113.75
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=2: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=3: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=4: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     3. after ADD1(M): yl,yh = ( 0, 4.74278e+307); yl+yh= 4.74278e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.74431e+307); yl+yh= 3.74431e+307
    
     ebd0(x=1e+307, M=1.75556e+305): M/x = (r=0.561779104644075) * 2^(e=-5); i=16,
     f=1820, fg=f*2^-(e+10)=56.875
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=2: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=3: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     j=4: ( 0, 4.04086e+307); ( 0, 4.04086e+307); yl+yh= 4.04086e+307
     3. after ADD1(M): yl,yh = ( 0, 4.05841e+307); yl+yh= 4.05841e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 3.05994e+307); yl+yh= 3.05994e+307
    
     ebd0(x=1e+307, M=3.51112e+305): M/x = (r=0.561779104644075) * 2^(e=-4); i=16,
     f=1820, fg=f*2^-(e+10)=28.4375
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=2: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=3: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     j=4: ( 0, 3.34771e+307); ( 0, 3.34771e+307); yl+yh= 3.34771e+307
     3. after ADD1(M): yl,yh = ( 0, 3.38282e+307); yl+yh= 3.38282e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 2.38435e+307); yl+yh= 2.38435e+307
    
     ebd0(x=1e+307, M=7.02224e+305): M/x = (r=0.561779104644075) * 2^(e=-3); i=16,
     f=1820, fg=f*2^-(e+10)=14.2188
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=2: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=3: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     j=4: ( 0, 2.65456e+307); ( 0, 2.65456e+307); yl+yh= 2.65456e+307
     3. after ADD1(M): yl,yh = ( 0, 2.72479e+307); yl+yh= 2.72479e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.72631e+307); yl+yh= 1.72631e+307
    
     ebd0(x=1e+307, M=1.40445e+306): M/x = (r=0.561779104644075) * 2^(e=-2); i=16,
     f=1820, fg=f*2^-(e+10)=7.10938
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=2: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=3: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     j=4: ( 0, 1.96142e+307); ( 0, 1.96142e+307); yl+yh= 1.96142e+307
     3. after ADD1(M): yl,yh = ( 0, 2.10186e+307); yl+yh= 2.10186e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.10339e+307); yl+yh= 1.10339e+307
    
     ebd0(x=1e+307, M=2.8089e+306): M/x = (r=0.561779104644075) * 2^(e=-1); i=16,
     f=1820, fg=f*2^-(e+10)=3.55469
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=2: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=3: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     j=4: ( 0, 1.26827e+307); ( 0, 1.26827e+307); yl+yh= 1.26827e+307
     3. after ADD1(M): yl,yh = ( 0, 1.54916e+307); yl+yh= 1.54916e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.50683e+306); yl+yh= 5.50683e+306
    
     ebd0(x=1e+307, M=5.61779e+306): M/x = (r=0.561779104644075) * 2^(e=0); i=16,
     f=1820, fg=f*2^-(e+10)=1.77734
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=2: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=3: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     j=4: ( 0, 5.75121e+306); ( 0, 5.75121e+306); yl+yh= 5.75121e+306
     3. after ADD1(M): yl,yh = ( 0, 1.1369e+307); yl+yh= 1.1369e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.38426e+306); yl+yh= 1.38426e+306
    
     ebd0(x=1e+307, M=1.12356e+307): M/x = (r=0.561779104644075) * 2^(e=1); i=16,
     f=1820, fg=f*2^-(e+10)=0.888672
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=2: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=3: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     j=4: ( 0, -1.18026e+306); ( 0, -1.18026e+306); yl+yh= -1.18026e+306
     3. after ADD1(M): yl,yh = ( 0, 1.00553e+307); yl+yh= 1.00553e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.05759e+304); yl+yh= 7.05759e+304
    
     ebd0(x=1e+307, M=2.24712e+307): M/x = (r=0.561779104644075) * 2^(e=2); i=16,
     f=1820, fg=f*2^-(e+10)=0.444336
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=2: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=3: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     j=4: ( 0, -8.11173e+306); ( 0, -8.11173e+306); yl+yh= -8.11173e+306
     3. after ADD1(M): yl,yh = ( 0, 1.43594e+307); yl+yh= 1.43594e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.37469e+306); yl+yh= 4.37469e+306
    
     ebd0(x=1e+307, M=4.49423e+307): M/x = (r=0.561779104644075) * 2^(e=3); i=16,
     f=1820, fg=f*2^-(e+10)=0.222168
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=2: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=3: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     j=4: ( 0, -1.50432e+307); ( 0, -1.50432e+307); yl+yh= -1.50432e+307
     3. after ADD1(M): yl,yh = ( 0, 2.98991e+307); yl+yh= 2.98991e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.99144e+307); yl+yh= 1.99144e+307
    
     ebd0(x=1e+307, M=8.98847e+307): M/x = (r=0.561779104644075) * 2^(e=4); i=16,
     f=1820, fg=f*2^-(e+10)=0.111084
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=2: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=3: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     j=4: ( 0, -2.19747e+307); ( 0, -2.19747e+307); yl+yh= -2.19747e+307
     3. after ADD1(M): yl,yh = ( 0, 6.791e+307); yl+yh= 6.791e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.79252e+307); yl+yh= 5.79252e+307
    
     ebd0(x=1e+307, M=1.79769e+308): M/x = (r=0.561779104644075) * 2^(e=5); i=16,
     f=1820, fg=f*2^-(e+10)=0.055542
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*b[0,j]), j=1:4:
     j=1: ( 0, 5.75121e+306); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=2: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=3: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     j=4: ( 0, -2.89061e+307); ( 0, -2.89061e+307); yl+yh= -2.89061e+307
     3. after ADD1(M): yl,yh = ( 0, 1.50863e+308); yl+yh= 1.50863e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.40878e+308); yl+yh= 1.40878e+308
    
     dpq_ebd0(x[1:1], np[1:35], ... ):
     ebd0(x=1e+307, M=4.18558e+298): M/x = (r=0.561779104644075) * 2^(e=-27); i=16,
     f=1820, fg=f*2^-(e+10)=2.38551e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( nan, inf); yl+yh= nan
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=8.37116e+298): M/x = (r=0.561779104644075) * 2^(e=-26); i=16,
     f=1820, fg=f*2^-(e+10)=1.19276e+08
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( nan, inf); yl+yh= nan
     non-finite yh --> return((yh=Inf, yl=0))
     ebd0(x=1e+307, M=1.67423e+299): M/x = (r=0.561779104644075) * 2^(e=-25); i=16,
     f=1820, fg=f*2^-(e+10)=5.96378e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=1: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=2: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     j=3: ( 0, 1.79038e+308); ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     3. after ADD1(M): yl,yh = ( 0, 1.79038e+308); yl+yh= 1.79038e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.69053e+308); yl+yh= 1.69053e+308
    
     ebd0(x=1e+307, M=3.34846e+299): M/x = (r=0.561779104644075) * 2^(e=-24); i=16,
     f=1820, fg=f*2^-(e+10)=2.98189e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=1: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=2: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     j=3: ( 0, 1.72107e+308); ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     3. after ADD1(M): yl,yh = ( 0, 1.72107e+308); yl+yh= 1.72107e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.62122e+308); yl+yh= 1.62122e+308
    
     ebd0(x=1e+307, M=6.69693e+299): M/x = (r=0.561779104644075) * 2^(e=-23); i=16,
     f=1820, fg=f*2^-(e+10)=1.49094e+07
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=1: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=2: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     j=3: ( 0, 1.65175e+308); ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     3. after ADD1(M): yl,yh = ( 0, 1.65175e+308); yl+yh= 1.65175e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.5519e+308); yl+yh= 1.5519e+308
    
     ebd0(x=1e+307, M=1.33939e+300): M/x = (r=0.561779104644075) * 2^(e=-22); i=16,
     f=1820, fg=f*2^-(e+10)=7.45472e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=1: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=2: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     j=3: ( 0, 1.58244e+308); ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     3. after ADD1(M): yl,yh = ( 0, 1.58244e+308); yl+yh= 1.58244e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.48259e+308); yl+yh= 1.48259e+308
    
     ebd0(x=1e+307, M=2.67877e+300): M/x = (r=0.561779104644075) * 2^(e=-21); i=16,
     f=1820, fg=f*2^-(e+10)=3.72736e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=1: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=2: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     j=3: ( 0, 1.51312e+308); ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     3. after ADD1(M): yl,yh = ( 0, 1.51312e+308); yl+yh= 1.51312e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.41327e+308); yl+yh= 1.41327e+308
    
     ebd0(x=1e+307, M=5.35754e+300): M/x = (r=0.561779104644075) * 2^(e=-20); i=16,
     f=1820, fg=f*2^-(e+10)=1.86368e+06
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=1: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=2: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     j=3: ( 0, 1.44381e+308); ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     3. after ADD1(M): yl,yh = ( 0, 1.44381e+308); yl+yh= 1.44381e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.34396e+308); yl+yh= 1.34396e+308
    
     ebd0(x=1e+307, M=1.07151e+301): M/x = (r=0.561779104644075) * 2^(e=-19); i=16,
     f=1820, fg=f*2^-(e+10)=931840
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=1: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=2: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     j=3: ( 0, 1.37449e+308); ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     3. after ADD1(M): yl,yh = ( 0, 1.37449e+308); yl+yh= 1.37449e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.27464e+308); yl+yh= 1.27464e+308
    
     ebd0(x=1e+307, M=2.14302e+301): M/x = (r=0.561779104644075) * 2^(e=-18); i=16,
     f=1820, fg=f*2^-(e+10)=465920
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=1: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=2: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     j=3: ( 0, 1.30518e+308); ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     3. after ADD1(M): yl,yh = ( 0, 1.30518e+308); yl+yh= 1.30518e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.20533e+308); yl+yh= 1.20533e+308
    
     ebd0(x=1e+307, M=4.28603e+301): M/x = (r=0.561779104644075) * 2^(e=-17); i=16,
     f=1820, fg=f*2^-(e+10)=232960
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=1: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=2: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     j=3: ( 0, 1.23586e+308); ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     3. after ADD1(M): yl,yh = ( 0, 1.23586e+308); yl+yh= 1.23586e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.13602e+308); yl+yh= 1.13602e+308
    
     ebd0(x=1e+307, M=8.57207e+301): M/x = (r=0.561779104644075) * 2^(e=-16); i=16,
     f=1820, fg=f*2^-(e+10)=116480
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=1: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=2: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     j=3: ( 0, 1.16655e+308); ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     3. after ADD1(M): yl,yh = ( 0, 1.16655e+308); yl+yh= 1.16655e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 1.0667e+308); yl+yh= 1.0667e+308
    
     ebd0(x=1e+307, M=1.71441e+302): M/x = (r=0.561779104644075) * 2^(e=-15); i=16,
     f=1820, fg=f*2^-(e+10)=58240
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=1: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=2: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     j=3: ( 0, 1.09723e+308); ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     3. after ADD1(M): yl,yh = ( 0, 1.09723e+308); yl+yh= 1.09723e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.97387e+307); yl+yh= 9.97387e+307
    
     ebd0(x=1e+307, M=3.42883e+302): M/x = (r=0.561779104644075) * 2^(e=-14); i=16,
     f=1820, fg=f*2^-(e+10)=29120
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=1: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=2: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     j=3: ( 0, 1.02792e+308); ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     3. after ADD1(M): yl,yh = ( 0, 1.02792e+308); yl+yh= 1.02792e+308
     4. after ADD1(- M*fg): yl,yh = ( 0, 9.28074e+307); yl+yh= 9.28074e+307
    
     ebd0(x=1e+307, M=6.85766e+302): M/x = (r=0.561779104644075) * 2^(e=-13); i=16,
     f=1820, fg=f*2^-(e+10)=14560
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=1: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=2: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     j=3: ( 0, 9.58603e+307); ( 0, 9.58603e+307); yl+yh= 9.58603e+307
     3. after ADD1(M): yl,yh = ( 0, 9.5861e+307); yl+yh= 9.5861e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 8.58763e+307); yl+yh= 8.58763e+307
    
     ebd0(x=1e+307, M=1.37153e+303): M/x = (r=0.561779104644075) * 2^(e=-12); i=16,
     f=1820, fg=f*2^-(e+10)=7280
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=1: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=2: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     j=3: ( 0, 8.89289e+307); ( 0, 8.89289e+307); yl+yh= 8.89289e+307
     3. after ADD1(M): yl,yh = ( 0, 8.89302e+307); yl+yh= 8.89302e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.89455e+307); yl+yh= 7.89455e+307
    
     ebd0(x=1e+307, M=2.74306e+303): M/x = (r=0.561779104644075) * 2^(e=-11); i=16,
     f=1820, fg=f*2^-(e+10)=3640
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=1: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=2: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     j=3: ( 0, 8.19974e+307); ( 0, 8.19974e+307); yl+yh= 8.19974e+307
     3. after ADD1(M): yl,yh = ( 0, 8.20001e+307); yl+yh= 8.20001e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 7.20154e+307); yl+yh= 7.20154e+307
    
     ebd0(x=1e+307, M=5.48612e+303): M/x = (r=0.561779104644075) * 2^(e=-10); i=16,
     f=1820, fg=f*2^-(e+10)=1820
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=1: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=2: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     j=3: ( 0, 7.50659e+307); ( 0, 7.50659e+307); yl+yh= 7.50659e+307
     3. after ADD1(M): yl,yh = ( 0, 7.50714e+307); yl+yh= 7.50714e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 6.50867e+307); yl+yh= 6.50867e+307
    
     ebd0(x=1e+307, M=1.09722e+304): M/x = (r=0.561779104644075) * 2^(e=-9); i=16,
     f=1820, fg=f*2^-(e+10)=910
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=1: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=2: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     j=3: ( 0, 6.81345e+307); ( 0, 6.81345e+307); yl+yh= 6.81345e+307
     3. after ADD1(M): yl,yh = ( 0, 6.81454e+307); yl+yh= 6.81454e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.81607e+307); yl+yh= 5.81607e+307
    
     ebd0(x=1e+307, M=2.19445e+304): M/x = (r=0.561779104644075) * 2^(e=-8); i=16,
     f=1820, fg=f*2^-(e+10)=455
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=1: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=2: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     j=3: ( 0, 6.1203e+307); ( 0, 6.1203e+307); yl+yh= 6.1203e+307
     3. after ADD1(M): yl,yh = ( 0, 6.12249e+307); yl+yh= 6.12249e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 5.12402e+307); yl+yh= 5.12402e+307
    
     ebd0(x=1e+307, M=4.3889e+304): M/x = (r=0.561779104644075) * 2^(e=-7); i=16,
     f=1820, fg=f*2^-(e+10)=227.5
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=1: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=2: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     j=3: ( 0, 5.42715e+307); ( 0, 5.42715e+307); yl+yh= 5.42715e+307
     3. after ADD1(M): yl,yh = ( 0, 5.43154e+307); yl+yh= 5.43154e+307
     4. after ADD1(- M*fg): yl,yh = ( 0, 4.43307e+307); yl+yh= 4.43307e+307
    
     ebd0(x=1e+307, M=8.7778e+304): M/x = (r=0.561779104644075) * 2^(e=-6); i=16,
     f=1820, fg=f*2^-(e+10)=113.75
     bd0_sc[0][0..3]= (0.693147 -1.90465e-09 -8.78318e-17 3.06184e-24 )
     i -> bd0_sc[i][0..3]= (0.57512 2.24238e-09 -2.20452e-17 4.07854e-25 )
     small(?) (M*fg-x)/x = (M*fg)/x - 1 = -0.001525419480256795
     1a. before adding -x * log1pmx(.) = -x * -1.16464e-06 = 1.16464e+301
     1. after A.(-x*l..): yl,yh = ( 0, 1.16464e+301); yl+yh= 1.16464e+301
     2: A(x*b[i,j]) and A(-x*e*b[0,j]), j=1:4:
     j=0: ( 0, 5.75121e+306); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=1: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=2: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     j=3: ( 0, 4.734e+307); ( 0, 4.734e+307); yl+yh= 4.734e+307
     3. after ADD1(M): yl,yh = ( 0, 4.74278e+307); yl+yh= 4.74278e+307
     4. after ADD1(- M*fg): yl,yh =