Package ‘Tplyr’

October 15, 2021
Title A Grammar of Clinical Data Summary
Version 0.4.2
Description A tool created to simplify the data manipulation necessary to create clinical reports.

License MIT + file LICENSE
URL https://github.com/atorus-research/Tplyr

BugReports https://github.com/atorus-research/Tplyr/issues
Encoding UTF-8
Depends R (>=3.5.0)

Imports rlang (>= 0.4.6), assertthat (>= 0.2.1), magrittr (>= 1.5),
dplyr (>= 1.0.0), purrr (>= 0.3.3), stringr (>= 1.4.0), tidyr
(>=1.0.2), tidyselect (>= 1.1.0), tibble (>=3.0.1),
lifecycle, forcats (>= 0.4.0)

Suggests testthat (>=2.1.0), haven (>= 2.2.0), knitr, rmarkdown,
huxtable, tidyverse, readr, kableExtra, pharmaRTF

VignetteBuilder knitr
RoxygenNote 7.1.2
RdMacros lifecycle
NeedsCompilation no

Author Eli Miller [aut] (<https://orcid.org/0000-0002-2127-9456>),
Mike Stackhouse [aut, cre] (<https://orcid.org/0000-0001-6030-723X>),
Ashley Tarasiewicz [aut],
Nathan Kosiba [aut] (<https://orcid.org/0000-0001-5359-4234>),
Atorus Research LLC [cph]

Maintainer Mike Stackhouse <mike.stackhouse@atorusresearch.com>
Repository CRAN
Date/Publication 2021-10-15 13:20:02 UTC

https://github.com/atorus-research/Tplyr
https://github.com/atorus-research/Tplyr/issues
https://orcid.org/0000-0002-2127-9456
https://orcid.org/0000-0001-6030-723X
https://orcid.org/0000-0001-5359-4234

2

R topics documented:

R topics documented:

Index

add_column_headers e 3
add_layer e 5
add_risk_diff e e 6
add_total_ TOwW L. L e 8
add_treat_grps o i e e e e e e e e e e 9
apply_row_masks e 11
build 12
oSt . e e 13
el DY . . e 14
get_desc_layer_formats 15
get_numeric_data e 16
get_precision_by e e 17
GEL_PIeciSiON_ON it e e e e 18
get_stats_data L. e 19
GEL_LArEL_VAT o i i e e e e e e e e e e e e e e e e e 20
get_where.tplyr_layer 21
GIOUP_COUNL . . o . v v vt v et e e e e e e e e e e e e e e e e e e 22
header n. 24
keep_levels L 25
pop_data. e e e 26
POP_rEAt_VAT ottt e e e e e e e e e e e e 27
process_formatting L. L e e 27
process_statistic_datao 28
process_statistic_formatting oL Lo 28
PrOCESS_SUMMAIICS . . « « o v v v e e e v et e e e e e e e e e e 29
Set_CUStOM_SUMMATIES . . . « v v v v vt e e e e e e e e e e e e e e 29
set_denoms_by e e 31
set_denom_ignore e 32
set_denom_where e e e 33
set_distinct_by L. 33
set_format_strings. e e e e 34
set_indentation e e e e e e e e e e 36
SEt_MISSING_ COUNE. o o i vttt e bttt e e e e 37
SEt_NESE_COUNL v . v v i e e e e e e e e e e e e e e e 38
set_order_count_method 38
set_outer_SOrt_poSition e e e e 41
set_total_row_label 42
Tplyr . . e 43
tplyr_layer e e e e 45
tplyr_table 46
trEAL_VAT vt o e 48

49

add_column_headers 3

add_column_headers Attach column headers to a Tplyr output

Description
When working with "huxtable’ tables, column headers can be controlled as if they are rows in the
data frame. add_column_headers eases the process of introducing these headers.

Usage

add_column_headers(.data, s, header_n = NULL)

Arguments
.data The data.frame/tibble on which the headers shall be attached
s The text containing the intended header string
header_n A header_n or generic data.frame to use for binding count values. This is re-
quired if you are using the token replacement.
Details

Headers are created by providing a single string. Columns are specified by delimitting each header
with a ’I” symbol. Instead of specifying the destination of each header, add_column_headers
assumes that you have organized the columns of your data frame before hand. This means that after
you use Tplyr: :build(), if you’d like to reorganize the default column order (which is simply
alphabetical), simply pass the build output to a dplyr::select or dplyr::relocate statement
before passing into add_column_headers.

Spanning headers are also supported. A spanning header is an overarching header that sits across
multiple columns. Spanning headers are introduced to add_column_header by providing the span-
ner text (i.e. the text that you’d like to sit in the top row), and then the spanned text (the bottom
row) within curly brackets (’{}). For example, take the iris dataset. We have the names:

"Sepal.Length” "Sepal.Width"” "Petal.Length” "Petal.Width"” "Species”

If we wanted to provide a header string for this dataset, with spanners to help with categorization of
the variables, we could provide the following string:

"Sepal {Length | Width} | Petal {Length | Width} | Species”

Value

A data.frame with the processed header string elements attached as the top rows

Important note

Make sure you are aware of the order of your variables prior to passing in to add_column_headers.
The only requirement is that the number of column match. The rest is up to you.

4 add_column_headers

Development notes
There are a few features of add_column_header that are intended but not yet supported:

* Nested spanners are not yet supported. Only a spanning row and a bottom row can currently
be created

* Different delimiters and indicators for a spanned group may be used in the future. The cur-
rent choices were intuitive, but based on feedback it could be determined that less common
characters may be necessary.

Token Replacement

This function has support for reading values from the header_n object in a Tplyr table and adding
them in the column headers. Note: The order of the parameters passed in the token is important.
They should be first the treatment variable then any cols variables in the order they were passed in
the table construction.

Use a double asterisk "**" at the begining to start the token and another double asterisk to close
it. You can separate column parameters in the token with a single underscore. For example,
oroupl_flag2_param3 will pull the count from the header_n binding for group1 in the treat_var,
flag2 in the first cols argument, and param3 in the second cols argument.

You can pass fewer arguments in the token to get the sum of multiple columns. For example,
groupl would get the sum of the groupl treat_var, and all cols from the header_n.

Examples

Load in pipe

library(magrittr)

library(dplyr)

header_string <- "Sepal {Length | Width} | Petal {Length | Width} | Species”

iris2 <- iris %>%
mutate_all(as.character)

iris2 %>% add_column_headers(header_string)

Example with counts
mtcars2 <- mtcars %>%
mutate_all(as.character)

t <- tplyr_table(mtcars2, vs, cols = am) %>%
add_layer(
group_count(cyl)
)

b_t <- build(t) %>%
mutate_all(as.character)

count_string <- paste@(” | V N=xx@x* {auto N=**Q_0** | man N=*xQ_1%x} |",
" S N=*x1%%x {auto N=x*1_0** | man N=x*1_1%x} | | ")

add_column_headers(b_t, count_string, header_n(t))

add_layer 5

add_layer Attach a layer to a tplyr_table object

Description

add_layer attaches a tplyr_layer to a tplyr_table object. This allows for a tidy style of pro-
gramming (using magrittr piping, i.e. %>%) with a secondary advantage - the construction of the
layer object may consist of a series of piped functions itself.

Tplyr encourages a user to view the construction of a table as a series of "layers". The construction
of each of these layers are isolated and independent of one another - but each of these layers are
children of the table itself. add_layer isolates the construction of an individual layer and allows
the user to construct that layer and insert it back into the parent. The syntax for this is intuitive and
allows for tidy piping. Simply pipe the current table object in, and write the code to construct your
layer within the layer parameter.

add_layers is another approach to attaching layers to a tplyr_table. Instead of constructing the
entire table at once, add_layers allows you to construct layers as different objects. These layers
can then be attached into the tplyr_table all at once.

add_layer and add_layers both additionally allow you to name the layers as you attach them.
This is helpful when using functions like get_numeric_data or get_stats_data when you can
access information from a layer directly. add_layer has a name parameter, and layers can be named
in add_layers by submitting the layer as a named argument.

Usage

add_layer(parent, layer, name = NULL)

add_layers(parent, ...)
Arguments
parent A tplyr_table or tplyr_layer/tplyr_subgroup_layer object
layer A layer construction function and associated modifier functions
name A name to provide the layer in the table layers container
Layers to be added
Value

A tplyr_table or tplyr_layer/tplyr_subgroup_layer with a new layer inserted into the layer
binding

See Also

[tplyr_table(), tplyr_layer(), group_count(), group_desc(), group_shift()]

6 add_risk_diff

Examples

Load in pipe
library(magrittr)

Single layer
t <- tplyr_table(mtcars, cyl) %>%
add_layer(
group_desc(target_var=mpg)

)

Single layer with name
t <- tplyr_table(mtcars, cyl) %>%
add_layer (name="mpg"',
group_desc(target_var=mpg)
)

Using add_layers

t <- tplyr_table(mtcars, cyl)

11 <- group_desc(t, target_var=mpg)
12 <- group_count(t, target_var=cyl)

t <- add_layers(t, 11, 'cyl' = 12)

add_risk_diff Add risk difference to a count layer

Description

A very common requirement for summary tables is to calculate the risk difference between treat-
ment groups. add_risk_diff allows you to do this. The underlying risk difference calculations
are performed using the Base R function prop.test - so prior to using this function, be sure to
familiarize yourself with its functionality.

Usage
add_risk_diff(layer, ..., args = list(), distinct = TRUE)
Arguments
layer Layer upon which the risk difference will be attached
Comparison groups, provided as character vectors where the first group is the
comparison, and the second is the reference
args Arguments passed directly into prop. test

distinct Logical - Use distinct counts (if available).

add_risk_diff 7

Details

add_risk_diff can only be attached to a count layer, so the count layer must be constructed first.
add_risk_diff allows you to compare the difference between treatment group, so all comparisons
should be based upon the values within the specified treat_var in your tplyr_table object.

Comparisons are specified by providing two-element character vectors. You can provide as many of

these groups as you want. You can also use groups that have been constructed using add_treat_grps
or add_total_group. The first element provided will be considered the ’reference’ group (i.e. the

left side of the comparison), and the second group will be considered the ’comparison’. So if you’d

like to see the risk difference of *T1 - Placebo’, you would specify this as c('T1', '"Placebo').

Tplyr forms your two-way table in the background, and then runs prop. test appropriately. Similar
to way that the display of layers are specified, the exact values and format of how you’d like the risk
difference display are set using set_format_strings. This controls both the values and the format
of how the risk difference is displayed. Risk difference formats are set within set_format_strings
by using the name ’riskdiff’.

You have 5 variables to choose from in your data presentation:

comp Probability of the left hand side group (i.e. comparison)

ref Probability of the right hand side group (i.e. reference)

dif Difference of comparison - reference

low Lower end of the confidence interval (default is 95%, override with the args paramter)

high Upper end of the confidence interval (default is 95%, override with the args paramter)

Use these variable names when forming your f_str objects. The default presentation, if no string
format is specified, will be:

f_str('xx.xxx (xx.xxx,xx.xxx)"',dif,low,high)

Note - within Tplyr, you can account for negatives by allowing an extra space within your integer
side settings. This will help with your alignment.

If columns are specified on a Tplyr table, risk difference comparisons still only take place between
groups within the treat_var variable - but they are instead calculated treating the cols variables
as by variables. Just like the tplyr layers themselves, the risk difference will then be transposed and
display each risk difference as separate variables by each of the cols variables.

If distinct is TRUE (the default), all calculations will take place on the distinct counts, if they are
available. Otherwise, non-distinct counts will be used.

One final note - prop. test may throw quite a few warnings. This is natural, because it alerts you
when there’s not enough data for the approximations to be correct. This may be unnerving coming
from a SAS programming world, but this is R is trying to alert you that the values provided don’t
have enough data to truly be statistically accurate.

Examples
library(magrittr)

Two group comparisons with default options applied
t <- tplyr_table(mtcars, gear)

8 add_total row

Basic risk diff for two groups, using defaults
11 <- group_count(t, carb) %>%
Compare 3 vs. 4, 3 vs. 5
add_risk_diff(
c('3', '4'),
c('3', '5")
)

Build and show output
add_layers(t, 11) %>% build()

Specify custom formats and display variables
t <- tplyr_table(mtcars, gear)

Create the layer with custom formatting
12 <- group_count(t, carb) %>%
Compare 3 vs. 4, 3 vs. 5
add_risk_diff(

c('3', "4,
c('3', '5")
) %%
set_format_strings(
'n_counts' = f_str('xx (xx.x)', n, pct),
"riskdiff' = f_str('xx.xxx, XX.XXX, XX.XXX, XX.XXX, XX.xxx', comp, ref, dif, low, high)

)

Build and show output
add_layers(t, 12) %>% build()

Passing arguments to prop.test
t <- tplyr_table(mtcars, gear)

Create the layer with args option
13 <- group_count(t, carb) %>%
Compare 3 vs. 4, 4 vs. 5
add_risk_diff(

C(l3|’ |4l)’
C(I3‘Y ‘5')7
args = list(conf.level = 0.9, correct=FALSE, alternative='less')

)

Build and show output
add_layers(t, 13) %>% build()

add_total_row Add a Total row into a count summary.

Description

Adding a total row creates an additional observation in the count summary that presents the total
counts (i.e. the n’s that are summarized). The format of the total row will be formatted in the same

add_treat_grps 9

way as the other count strings.

Usage

add_total_row(e, fmt = NULL, count_missings = TRUE, sort_value = NULL)

Arguments
e A count_layer object
fmt An f_str object used to format the total row. If none is provided, display is based

on the layer formatting.

count_missings Whether or not to ignore the named arguments passed in ‘set_count_missing()*
when calculating counts total row. This is useful if you need to exclude/include
the missing counts in your total row. Defaults to TRUE meaning total row will
not ignore any values.

sort_value The value that will appear in the ordering column for total rows. This must be a
numeric value.

Details

Totals are calculated using all grouping variables, including treat_var and cols from the table level.
If by variables are included, the grouping of the total and the application of denominators becomes
ambiguous. You will be warned specifically if a percent is included in the format. To rectify this,
use set_denoms_by (), and the grouping of add_total_row() will be updated accordingly.

Examples

Load in Pipe
library(magrittr)

tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl) %>%
add_total_row(f_str("xxxx", n))
) %>%
build()

add_treat_grps Combine existing treatment groups for summary

Description

Summary tables often present individual treatment groups, but may additionally have a "Treatment
vs. Placebo" or "Total" group added to show grouped summary statistics or counts. This set of
functions offers an interface to add these groups at a table level and be consumed by subsequent
layers.

10 add_treat_grps
Usage

add_treat_grps(table, ...)

add_total_group(table, group_name = "Total"”)

treat_grps(table)

Arguments
table A tplyr_table object
A named vector where names will become the new treatment group names, and
values will be used to construct those treatment groups
group_name The treatment group name used for the constructed *Total’ group
Details

add_treat_grps allows you to specify specific groupings. This is done by supplying named argu-
ments, where the name becomes the new treatment group’s name, and those treatment groups are
made up of the argument’s values.

add_total_group is a simple wrapper around add_treat_grps. Instead of producing custom
groupings, it produces a "Total" group by the supplied name, which defaults to "Total". This "Total"
group is made up of all existing treatment groups within the population dataset.

The function treat_grps allows you to see the custom treatment groups available in your tplyr_table
object

Value

The modified table object

Examples

tab <- tplyr_table(iris, Species)

A custom group
add_treat_grps(tab, "Not Setosa” = c("versicolor”, "virginica"))

Add a total group
add_total_group(tab)

treat_grps(tab)
Returns:
$*Not Setosa'

#[1] "versicolor” "virginica”

#

#$Total

#[1] "setosa” "versicolor” "virginica”

apply_row_masks 11

apply_row_masks Replace repeating row label variables with blanks in preparation for
display.

Description

Depending on the display package being used, row label values may need to be blanked out if
they are repeating. This gives the data frame supporting the table the appearance of the grouping
variables being grouped together in blocks. apply_row_masks does this work by blanking out the
value of any row_label variable where the current value is equal to the value before it. Note -
apply_row_masks assumes that the data frame has already be sorted and therefore should only be
applied once the data frame is in its final sort sequence.

Usage
apply_row_masks(dat, row_breaks = FALSE, ...)
Arguments
dat Data.frame / tibble to mask repeating row_labels
row_breaks Boolean - set to TRUE to insert row breaks
Variable used to determine where row-breaks should be inserted. Breaks will
be inserted when this group of variables changes values. This is determined by
dataset order, so sorting should be done prior to using apply_row_masks. If left
empty, ord_layer_index will be used.
Details

Additionally, apply_row_masks can add row breaks for you between each layer. Row breaks are
inserted as blank rows. This relies on the "break by" variables (submitted via .. .) constructed in
build still being attached to the dataset. An additional order variable is attached named ord_break,
but the output dataset is sorted to properly insert the row breaks between layers.

Value

tibble with blanked out rows where values are repeating

12 build

build Trigger the execution of the tplyr_table

Description

The functions used to assemble a tplyr_table object and each of the layers do not trigger the
processing of any data. Rather, a lazy execution style is used to allow you to contruct your table
and then explicitly state when the data processing should happen. build triggers this event.

Usage
build(x)

Arguments

X A tplyr_table object

Details

When the build command is executed, all of the data processing commences. Any preprocessing
necessary within the table environment takes place first. Next, each of the layers begins executing.
Once the layers complete executing, the output of each layer is stacked into the resulting data frame.

Once this process is complete, any post-processing necessary within the table environment takes
place, and the final output can be delivered. Metadata and traceability information are kept within
each of the layer environments, which allows an investigation into the source of the resulting dat-
apoints. For example, numeric data from any summaries performed is maintained and accessible
within a layer using get_numeric_data.

Value

An executed tplyr_table

See Also

tplyr_table, tplyr_layer, add_layer, add_layers, layer_constructors

Examples

Load in Pipe
library(magrittr)

tplyr_table(iris, Species) %>%
add_layer(
group_desc(Sepal.Length, by = "Sepal Length")
) %%
add_layer(
group_desc(Sepal.Width, by = "Sepal Width")
) %%

f_str 13

build()

f_str Create a f_str object

Description

f_str objects are intended to be used within the function set_format_strings. The f_str object
carries information that powers a significant amount of layer processing. The format_string
parameter is capable of controlling the display of a data point and decimal precision. The variables

provided in . . . control which data points are used to populate the string formatted output.
Usage

f_str(format_string, ..., empty = c(.overall = ""))
Arguments

format_string The desired display format. X’s indicate digits. On the left, the number of
x’s indicates the integer length. On the right, the number of x’s controls decimal
precision and rounding. Variables are inferred by any separation of the ’x’ values
other than a decimal.

The variables to be formatted using the format specified in format_string.

empty The string to display when the numeric data is not available. For desc layers, an
unnamed character vector will populate within the provided format string, set
to the same width as the fitted numbers. Use a single element character vector,
with the element named ’.overall’ to instead replace the whole string.

Details

Format strings are one of the most powerful components of *Tplyr’. Traditionally, converting nu-
meric values into strings for presentation can consume a good deal of time. Values and decimals
need to align between rows, rounding before trimming is sometimes forgotten - it can become a te-
dious mess that is realistically not an important part of the analysis being performed. *Tplyr’ makes
this process as simple as we can, while still allowing flexibility to the user.

Tplyr provides both manual and automatic decimal precision formatting. The display of the num-
bers in the resulting data frame is controlled by the format_string parameter. For manual pre-
cision, just like dummy values may be presented on your mocks, integer and decimal precision is
specified by the user providing a string of *x’s for how you’d like your numbers formatted. If you’d
like 2 integers with 3 decimal places, you specify your string as xx.xxx’. *Tplyr’ does the work to
get the numbers in the right place.

To take this a step further, automatic decimal precision can also be obtained based on the collected
precision within the data. When creating tables where results vary by some parameter, different
results may call for different degrees of precision. To use automatic precision, use a single ’a’ on
either the integer and decimal side. If you’d like to use increased precision (i.e. you’d like mean to

14 get_by

be collected precision +1), use "a+1’. So if you’d like both integer and and decimal precision to be
based on the data as collected, you can use a format like ’a.a’ - or for collected+1 decimal precision,
’a.a+1’. You can mix and match this with manual formats as well, making format strings such as
xx.a+1’.

If you want two numbers on the same line, you provide two sets of x’s. For example, if you're
presenting a value like "mean (sd)" - you could provide the string ’xx.xx (xX.xxx)’, or perhaps
’a.a+1 (a.a+2). Note that you’re able to provide different integer lengths and different decimal
precision for the two values. Each format string is independent and relates only to the format
specified.

The other parameters of the f_str call specify what values should fill the x’s. f_str objects are
used slightly differently between different layers. When declaring a format string within a count
layer, f_str expects to see the values n and (if desired) pct, which specifies the formatting for your
n’s and percent values. But in descriptive statistic layers, f_str parameters refer to the names of
the summaries being performed, either by built in defaults, or custom summaries declared using
set_custom_summaries. See set_format_strings for some more notes about layers specific
implementation.

Count and shift layers frequencies and percentages can be specified with 'n’ and ’pct’ respec-
tively. Distinct values can also be presented in count layers with the arguments ’distinct’ and
“distinct_total’.

Value

A f_str object

Examples

f_str("xx.x (xx.x)", mean, sd)
f_str("a.a+1 (a.a+2)", mean, sd)
f_str(”"xx.a (xx.a+1)", mean, sd)

”

f_str("xx.x, xx.x, xx.x", ql, median, q3)

get_by Set or return by layer binding

Description

Set or return by layer binding

Usage
get_by(layer)

set_by(layer, by)

get_desc_layer_formats 15

Arguments

layer A tplyr_layer object

by A string, a variable name, or a list of variable names supplied using dplyr: :vars.
Value

For get_by, the by binding of the supplied layer. For set_by the modified layer environment.

Examples

Load in pipe

library(magrittr)

iris$Species2 <- iris$Species

lay <- tplyr_table(iris, Species) %>%
group_count(Species) %>%
set_by(vars(Species2, Sepal.Width))

get_desc_layer_formats
Get or set the default format strings for descriptive statistics layers

Description

Tplyr provides you with the ability to set table-wide defaults of format strings. You may wish to
reuse the same format strings across numerous layers. set_desc_layer_formats and set_count_layer_formats
allow you to apply your desired format strings within the entire scope of the table.

Usage
get_desc_layer_formats(obj)
set_desc_layer_formats(obj, ...)
get_count_layer_formats(obj)
set_count_layer_formats(obj, ...)

get_shift_layer_formats(obj)

set_shift_layer_formats(obj, ...)
Arguments
obj A tplyr_table object

formats to pass forward

16 get_numeric_data

Details

For descriptive statistic layers, you can also use set_format_strings and set_desc_layer_formats

together within a table, but not within the same layer. In the absence of specified format strings, first

the table will be checked for any available defaults, and otherwise the tplyr.desc_layer_default_formats

option will be used. set_format_strings will always take precedence over either. Defaults cannot

be combined between set_format_strings, set_desc_layer_formats, and the tplyr.desc_layer_default_formats
because the order of presentation of results is controlled by the format strings, so relying on combi-

nations of these setting would not be intuitive.

For count layers, you can override the n_counts or riskdiff format strings separately, and the
narrowest scope available will be used from layer, to table, to default options.

get_numeric_data Retrieve the numeric data from a tplyr objects

Description

get_numeric_data provides access to the un-formatted numeric data for each of the layers within
a tplyr_table, with options to allow you to extract distinct layers and filter as desired.

Usage

get_numeric_data(x, layer = NULL, where = TRUE, ...)
Arguments

X A tplyr_table or tplyr_layer object

layer Layer name or index to select out specifically

where Subset criteria passed to dplyr::filter

Additional arguments to pass forward

Details

When used on a tplyr_table object, this method will aggregate the numeric data from all Tplyr
layers. The data will be returned to the user in a list of data frames. If the data has already been
processed (i.e. build has been run), the numeric data is already available and will be returned
without reprocessing. Otherwise, the numeric portion of the layer will be processed.

Using the layer and where parameters, data for a specific layer can be extracted and subset. This
is most clear when layers are given text names instead of using a layer index, but a numeric index
works as well.

Value

Numeric data from the Tplyr layer

get_precision_by 17

Examples

Load in pipe
library(magrittr)

t <- tplyr_table(mtcars, gear) %>%
add_layer(name='drat',
group_desc(drat)
) %%
add_layer(name="cyl',
group_count(cyl)
)

Return a list of the numeric data frames
get_numeric_data(t)

Get the data from a specific layer
get_numeric_data(t, layer='drat')
get_numeric_data(t, layer=1)

Choose multiple layers by name or index
get_numeric_data(t, layer=c('cyl', 'drat'))
get_numeric_data(t, layer=c(2, 1))

Get the data and filter it
get_numeric_data(t, layer='drat', where = gear==3)

get_precision_by Set or return precision_by layer binding

Description

The precision_by variables are used to collect the integer and decimal precision when auto-precision
is used. These by variables are used to group the input data and identify the maximum precision
available within the dataset for each by group. The precision_by variables must be a subset of the
by variables

Usage
get_precision_by(layer)
set_precision_by(layer, precision_by)

Arguments

layer A tplyr_layer object

precision_by A string, a variable name, or a list of variable names supplied using dplyr: :vars.

18 get_precision_on

Value

For get_precision_by, the precision_by binding of the supplied layer. For set_precision_by
the modified layer environment.

Examples

Load in pipe
library(magrittr)
lay <- tplyr_table(mtcars, gear) %>%
add_layer(
group_desc(mpg, by=vars(carb, am)) %>%
set_precision_by(carb)

)

get_precision_on Set or return precision_on layer binding

Description

The precision_on variable is the variable used to establish numeric precision. This variable must be
included in the list of target_var variables.

Usage

get_precision_on(layer)

set_precision_on(layer, precision_on)

Arguments

layer A tplyr_layer object

precision_on A string, a variable name, or a list of variable names supplied using dplyr: :vars.

Value

For get_precision_on, the precision_on binding of the supplied layer. For set_precision_on
the modified layer environment.

Examples

Load in pipe
library(magrittr)
lay <- tplyr_table(mtcars, gear) %>%
add_layer(
group_desc(vars(mpg, disp), by=vars(carb, am)) %>%
set_precision_on(disp)

)

get_stats_data 19

get_stats_data Get statistics data

Description

Like the layer numeric data, Tplyr also stores the numeric data produced from statistics like risk
difference. This helper function gives you access to obtain that data from the environment

Usage

get_stats_data(x, layer = NULL, statistic = NULL, where = TRUE, ...)
Arguments

X A tplyr_table or tplyr_layer object

layer Layer name or index to select out specifically

statistic Statistic name or index to select

where Subset criteria passed to dplyr::filter

Additional arguments passed to dispatch

Details

When used on a tplyr_table object, this method will aggregate the numeric data from all Tplyr
layers and calculate all statistics. The data will be returned to the user in a list of data frames. If
the data has already been processed (i.e. build has been run), the numeric data is already available
and the statistic data will simply be returned. Otherwise, the numeric portion of the layer will be
processed.

Using the layer, where, and statistic parameters, data for a specific layer statistic can be extracted
and subset, allowing you to directly access data of interest. This is most clear when layers are given
text names instead of using a layer index, but a numeric index works as well. If just a statistic is
specified, that statistic will be collected and returned in a list of data frames, allowing you to grab,
for example, just the risk difference statistics across all layers.

Value

The statistics data of the supplied layer

Examples

library(magrittr)

t <- tplyr_table(mtcars, gear) %>%
add_layer(name='drat',
group_desc(drat)
) 5%
add_layer(name="cyl",
group_count(cyl)

20 get_target_var

) 5%
add_layer (name="am",
group_count(am) %>%
add_risk_diff(c('4', '3"))
) %%
add_layer (name="carb",
group_count(carb) %>%
add_risk_diff(c('4', '3"))
)

Returns a list of lists, containing stats data from each layer
get_stats_data(t)

Returns just the riskdiff statistics from each layer - NULL
for layers without riskdiff
get_stats_data(t, statistic="riskdiff")

Return the statistic data for just the "am” layer - a list
get_stats_data(t, layer="am")
get_stats_data(t, layer=3)

Return the statistic data for just the "am” and "cyl”, layer - a
list of lists

get_stats_data(t, layer=c("am”, "cyl"))

get_stats_data(t, layer=c(3, 2))

Return just the statistic data for "am” and "cyl” - a list
get_stats_data(t, layer=c("am”, "cyl"), statistic="riskdiff")
get_stats_data(t, layer=c(3, 2), statistic="riskdiff")

Return the riskdiff for the "am"” layer - a data frame
get_stats_data(t, layer="am”, statistic="riskdiff")

Return and filter the riskdiff for the am layer - a data frame
get_stats_data(t, layer="am”, statistic="riskdiff"”, where = summary_var==1)

get_target_var Set or return treat_var binding

Description

Set or return treat_var binding

Usage

get_target_var(layer)

set_target_var(layer, target_var)

get_where.tplyr_layer 21

Arguments

layer A tplyr_layer object

target_var A symbol to perform the analysis on
Value

For treat_var, the treatment variable binding of the layer object. For set_treat_var, the modi-
fied layer environment.

Examples

Load in pipe

library(magrittr)

iris$Species2 <- iris$Species

lay <- tplyr_table(iris, Species) %>%
group_count(Species) %>%
set_target_var(Species2)

get_where.tplyr_layer Set or return where binding for layer or table

Description

Set or return where binding for layer or table

Usage

S3 method for class 'tplyr_layer'
get_where(obj)

S3 method for class 'tplyr_layer'
set_where(obj, where)

get_where(obj)

S3 method for class 'tplyr_table'
get_where(obj)

set_where(obj, where)

S3 method for class 'tplyr_table'
set_where(obj, where)

set_pop_where(obj, where)

get_pop_where(obj)

22 group_count

Arguments
obj A tplyr_layer or tplyr_table object.
where An expression (i.e. syntax) to be used to subset the data. Supply as programming
logic (i.e. x <5 & y == 10)
Value

For where, the where binding of the supplied object. For set_where, the modified object

Examples

Load in pipe
library(magrittr)

iris$Species2 <- iris$Species

lay <- tplyr_table(iris, Species) %>%
group_count(Species) %>%
set_where(Petal.Length > 3) %>%
Set logic for pop_data as well
set_pop_where(Petal.Length > 3)

group_count Create a count, desc, or shift layer for discrete count based sum-
maries, descriptive statistics summaries, or shift count summaries

Description

This family of functions specifies the type of summary that is to be performed within a layer. count
layers are used to create summary counts of some discrete variable. desc layers create summary
statistics, and shift layers summaries the counts of different changes in states. See the "details"
section below for more information.

Usage
group_count(parent, target_var, by = vars(), where = TRUE, ...)
group_desc(parent, target_var, by = vars(), where = TRUE, ...)
group_shift(parent, target_var, by = vars(), where = TRUE, ...)

Arguments
parent Required. The parent environment of the layer. This must be the tplyr_table

object that the layer is contained within.

target_var Symbol. Required, The variable name(s) on which the summary is to be per-

formed. Must be a variable within the target dataset. Enter unquoted - i.e.
target_var = AEBODSYS. You may also provide multiple variables with vars.

group_count 23

by A string, a variable name, or a list of variable names supplied using vars
where Call. Filter logic used to subset the target data when performing a summary.
Additional arguments to pass forward
Details

Count Layers Count layers allow you to create summaries based on counting values with a vari-

able. Additionally, this layer allows you to create n (%) summaries where you’re also sum-
marizing the proportion of instances a value occurs compared to some denominator. Count
layers are also capable of producing counts of nested relationships. For example, if you want
to produce counts of an overall outside group, and then the subgroup counts within that group,
you can specify the target variable as vars(OutsideVariable, InsideVariable). This allows you
to do tables like Adverse Events where you want to see the Preferred Terms within Body
Systems, all in one layer. Further control over denominators is available using the function
set_denoms_by and distinct counts can be set using set_distinct_by

Descriptive Statistics Layers Descriptive statistics layers perform summaries on continuous vari-

ables. There are a number of summaries built into Tplyr already that you can perform, in-
cluding n, mean, median, standard deviation, variance, min, max, inter-quartile range, Q1,
Q3, and missing value counts. From these available summaries, the default presentation of a
descriptive statistic layer will output 'n’, ’Mean (SD)’, "Median’, ’Q1, Q3’, "Min, Max’, and
’Missing’. You can change these summaries using set_format_strings, and you can also
add your own summaries using set_custom_summaries. This allows you to implement any
additional summary statistics you want presented.

Shift Layers A shift layer displays an endpoint’s ’shift’ throughout the duration of the study. It

Value

is an abstraction over the count layer, however we have provided an interface that is more
efficient and intuitive. Targets are passed as named symbols using dplyr::vars. Gener-
ally the baseline is passed with the name ’row’ and the shift is passed with the name ’col-
umn’. Both counts (n) and percentages (pct) are supported and can be specified with the
set_format_strings function. To allow for flexibility when defining percentages, you can
define the denominator using the set_denoms_by function. This function takes variable names
and uses those to determine the denominator for the counts.

An tplyr_layer environment that is a child of the specified parent. The environment contains the
object as listed below.

A tplyr_layer object

See Also

[add_layer, add_layers, tplyr_table, tplyr_layer]

Examples

Load in pipe
library(magrittr)

t <-

tplyr_table(iris, Species) %>%

24 header n

add_layer(
group_desc(target_var=Sepal .Width)
)
t <- tplyr_table(iris, Species) %>%
add_layer(
group_desc(target_var=Sepal.Width)
)
t <- tplyr_table(mtcars, am) %>%
add_layer(
group_shift(vars(row=gear, column=carb), by=cyl)
)
header_n Return or set header_n binding
Description

The ‘header_n()* functions can be used to automatically pull the header_n derivations from the table
or change them for future use.

Usage
header_n(table)

header_n(x) <- value

set_header_n(table, value)

Arguments
table A tplyr_table object
X A tplyr_table object
value A data.frame with columns with the treatment variable, column variabes, and a
variable with counts named 'n’.
header_n A data.frame with columns with the treatment variable, column variabes, and a
variable with counts named 'n’.
Details

The ‘header_n‘ object is created by Tplyr when a table is built and intended to be used by the
‘add_column_headers()‘ function when displaying table level population totals. These methods are
intended to be used for calling the population totals calculated by Tplyr, and to overwrite them if a
user chooses to.

If you have a need to change the header Ns that appear in your table headers, say you know you
are working with a subset of the data that doesn’t represent the totals, you can replace the data used
with ‘set_header_n()‘.

keep_levels 25

Value

For tplyr_header_n the header_n binding of the tplyr_table object. For tplyr_header_n<-
and set_tplyr_header_n the modified object.

Examples

tab <- tplyr_table(mtcars, gear)

header_n(tab) <- data.frame(
gear = c(3, 4, 5),
n = c(10, 15, 45)

)

keep_levels Select levels to keep in a count layer

Description

In certain cases you only want a layer to include certain values of a factor. The ‘keep_levels()*
function allows you to pass character values to be included in the layer. The others are ignored.
**NOTE: Denominator calculation is unaffected by this function, see the examples on how to in-
clude this logic in your percentages’**

Usage
keep_levels(e, ...)
Arguments
e A count_layer object
Character values to count int he layer
Value

The modified Tplyr layer object

Examples

library(dplyr)
mtcars <- mtcars %>%
mutate_all(as.character)

t <- tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl) %>%

26 pop_data

keep_levels("4", "8") %>%
set_denom_where(cyl %in% c("4", "8"))
) %%
build()

pop_data Return or set population data bindings

Description

The population data is used to gather information that may not be available from the target dataset.
For example, missing treatment groups, population N counts, and proper N counts for denominators
will be provided through the population dataset. The population dataset defaults to the target dataset
unless otherwise specified using set_pop_data.

Usage
pop_data(table)
pop_data(x) <- value

set_pop_data(table, pop_data)

Arguments
table A tplyr_table object
X A tplyr_table object
value A data.frame with population level information
pop_data A data.frame with population level information
Value

For tplyr_pop_data the pop_data binding of the tplyr_table object. For tplyr_pop_data<-
nothing is returned, the pop_data binding is set silently. For set_tplyr_pop_data the modified
object.

Examples

tab <- tplyr_table(iris, Species)

pop_data(tab) <- mtcars

pop_treat_var 27

pop_treat_var Return or set pop_treat_var binding

Description
The treatment variable used in the target data may be different than the variable within the popula-
tion dataset. set_pop_treat_var allows you to change this.

Usage

pop_treat_var(table)

set_pop_treat_var(table, pop_treat_var)

Arguments

table A tplyr_table object

pop_treat_var Variable containing treatment group assignments within the pop_data binding.
Supply unquoted.
Value
For tplyr_pop_treat_var the pop_treat_var binding of the tplyr_table object. For set_tplyr_pop_treat_var
the modified object.

Examples

tab <- tplyr_table(iris, Species)

pop_data(tab) <- mtcars
set_pop_treat_var(tab, mpg)

process_formatting Process layers to get formatted and pivoted tables.

Description
This is an internal method, but is exported to support S3 dispatch. Not intended for direct use by a
user.

Usage

process_formatting(x, ...)

28 process_statistic_formatting

Arguments
X A tplyr_layer object
arguments passed to dispatch
Value

The formatted_table object that is binded to the layer

process_statistic_data
Process a tplyr_statistic object

Description

This is an internal function that is not meant for use externally, but must be exported. Use with

caution.
Usage
process_statistic_data(x, ...)
Arguments
X A tplyr_statistic environment
Additional pass through parameters
Value

Numeric statistc data from a tplyr statistc

process_statistic_formatting
Process string formatting on a tplyr_statistic object

Description

This is an internal function that is not meant for use externally, but must be exported. Use with
caution.

Usage

process_statistic_formatting(x, ...)

process_summaries 29

Arguments
X A tplyr_statistic environment
Additional pass through parameters
Value

Formatted tplyr_statistic data

process_summaries Process layers to get numeric results of layer

Description

This is an internal method, but is exported to support S3 dispatch. Not intended for direct use by a

user.
Usage
process_summaries(x, ...)
Arguments
X a tplyr_layer object
arguments passed to dispatch
Value

The tplyr_layer object with a “built_table’ binding

set_custom_summaries Set custom summaries to be performed within a descriptive statistics
layer

Description

This function allows a user to define custom summaries to be performed in a call to dplyr: : summarize().
A custom summary by the same name as a default summary will override the default. This allows

the user to override the default behavior of summaries built into *Tplyr’, while also adding new
desired summary functions.

Usage

set_custom_summaries(e, ...)

30 set_custom_summaries

Arguments
e desc layer on which the summaries should be bound
Named parameters containing syntax to be used in a call to dplyr: : summarize()
Details

When programming the logic of the summary function, use the variable name .var to within your
summary functions. This allows you apply the summary function to each variable when multiple
target variables are declared.

An important, yet not immediately obvious, part of using set_custom_summaries is to understand
the link between the named parameters you set in set_custom_summaries and the names called
in f_str objects within set_format_strings. In f_str, after you supply the string format you’d
like your numbers to take, you specify the summaries that fill those strings.

When you go to set your format strings, the name you use to declare a summary in set_custom_summaries
is the same name that you use in your f_str call. This is necessary because set_format_strings

needs some means of putting two summaries in the same value, and setting a row label for the
summary being performed.

Review the examples to see this put into practice. Note the relationship between the name created
in set_custom_summaries and the name used in set_format_strings within the f_str call

Value

Binds a variable custom_summaries to the specified layer

Examples

#lLoad in pipe
library(magrittr)

tplyr_table(iris, Species) %>%
add_layer(
group_desc(Sepal.Length, by = "Sepal Length") %>%
set_custom_summaries(
geometric_mean = exp(sum(log(.var[.var > 0]),
na.rm=TRUE) / length(.var))
) %>%
set_format_strings(
'Geometric Mean' = f_str('xx.xx', geometric_mean)
)
) %>%
build()

set_denoms_by 31

set_denoms_by Set variables used in pct denominator calculation

Description

This function is used when calculating pct in count or shift layers. The percentages default to
the treatment variable and any column variables but can be calculated on any variables passed to
target_var, treat_var, by, or cols.

Usage
set_denoms_by(e, ...)
Arguments
e A count/shift layer object
Unquoted variable names
Value

The modified layer object

Examples
library(magrittr)
Default has matrix of treatment group, additional columns,

and by variables sum to 1
tplyr_table(mtcars, am) %>%

add_layer(
group_shift(vars(row=gear, column=carb), by=cyl) %>%
set_format_strings(f_str(”"xxx (xx.xx%)", n, pct))
) %>%
build()

tplyr_table(mtcars, am) %>%
add_layer(
group_shift(vars(row=gear, column=carb), by=cyl) %>%
set_format_strings(f_str("xxx (xx.xx%)", n, pct)) %>%
set_denoms_by(cyl, gear) # Row % sums to 1
) %%
build()

tplyr_table(mtcars, am) %>%
add_layer(
group_shift(vars(row=gear, column=carb), by=cyl) %>%
set_format_strings(f_str("xxx (xx.xx%)", n, pct)) %>%
set_denoms_by(cyl, gear, am) # % within treatment group sums to 1
) %%
build()

32 set_denom_ignore

set_denom_ignore Set values the denominator calculation will ignore

Description

‘r lifecycle::badge("defunct")*

This is generally used for missing values. Values like "", NA, "NA" are common ways missing
values are presented in a data frame. In certain cases, percentages do not use "missing" values
in the denominator. This function notes different values as "missing" and excludes them from the

denominators.
Usage
set_denom_ignore(e, ...)
Arguments
e A count_layer object
Values to exclude from the percentage calculation. If you use ‘set_missing_counts()*
this should be the name of the parameters instead of the values, see the example
below.
Value

The modified layer object

Examples

library(magrittr)

mtcars2 <- mtcars

mtcars2[mtcars$cyl == 6, "cyl”] <- NA
mtcars2[mtcars$cyl == 8, "cyl”] <- "Not Found”

tplyr_table(mtcars2, gear) %>%
add_layer(
group_count(cyl) %>%

set_missing_count(f_str(”"xx ", n), Missing = c(NA, "Not Found"))
This function is currently deprecated. It was replaced with an
argument in set_missing_count
set_denom_ignore("Missing”)

) %%

build()

set_denom_where 33

set_denom_where Set Logic for denominator subsetting

Description

By default, denominators in count layers are subset based on the layer level where logic. In some
cases this might not be correct. This functions allows the user to override this behavior and pass
custom logic that will be used to subset the target dataset when calculating denominators for the
layer.

Usage

set_denom_where(e, denom_where)

Arguments
e A count_layer/shift_layer object
denom_where An expression (i.e. syntax) to be used to subset the target dataset for calculating
layer denominators. Supply as programming logic (i.e. x <5 & y == 10).
To remove the layer where parameter subsetting for the total row and thus the
percentage denominators, pass "TRUE’ to this function.
Value

The modified Tplyr layer object

Examples

library(magrittr)
t10 <- tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl, where = cyl != 6) %>%
set_denom_where (TRUE)
The denominators will be based on all of the values, including 6
) %>%
build()

set_distinct_by Set counts to be distinct by some grouping variable.

Description

In some situations, count summaries may want to see distinct counts by a variable like subject. For
example, the number of subjects in a population who had a particular adverse event. set_distinct_by
allows you to set the by variables used to determine a distinct count.

34 set_format_strings

Usage

set_distinct_by(e, distinct_by)

Arguments

e A count_layer/shift_layer object
distinct_by Variable(s) to get the distinct data.

Details

When a distinct_by value is set, distinct counts will be used by default. If you wish to combine
distinct and not distinct counts, you can choose which to display in your f_str objects using n,
pct, distinct, and distinct_pct.

Value

The layer object with

Examples

#lLoad in pipe
library(magrittr)

tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl) %>%
set_distinct_by(carb)

Y %%
build()
set_format_strings Set the format strings and associated summaries to be performed in a
layer
Description

"Tplyr’ gives you extensive control over how strings are presented. set_format_strings allows
you to apply these string formats to your layer. This behaves slightly differently between layers.

Usage

set_format_strings(e, ...)

S3 method for class 'desc_layer'
set_format_strings(e, ..., cap = getOption("tplyr.precision_cap"))

S3 method for class 'count_layer'
set_format_strings(e, ...)

set_format_strings 35

Arguments
e Layer on which to bind format strings
Named parameters containing calls to f_str to set the format strings
cap A named character vector containing an ’int’ element for the cap on integer
precision, and a ’dec’ element for the cap on decimal precision.
Details

Format strings are one of the most powerful components of *Tplyr’. Traditionally, converting nu-
meric values into strings for presentation can consume a good deal of time. Values and decimals
need to align between rows, rounding before trimming is sometimes forgotten - it can become a
tedious mess that, in the grand scheme of things, is not an important part of the analysis being
performed. ’Tplyr’ makes this process as simple as we can, while still allowing flexibility to the
user.

In a count layer, you can simply provide a single f_str object to specify how you want your n’s
(and possibly percents) formatted. If you are additionally supplying a statistic, like risk difference
using add_risk_diff, you specify the count formats using the name 'n_counts’. The risk dif-
ference formats would then be specified using the name ’riskdiff’. In a descriptive statistic layer,
set_format_strings allows you to do a couple more things:

* By naming parameters with character strings, those character strings become a row label in
the resulting data frame

* The actual summaries that are performed come from the variable names used within the f_str
calls

» Using multiple summaries (declared by your f_str calls), multiple summary values can ap-
pear within the same line. For example, to present "Mean (SD)" like displays.

* Format strings in the desc layer also allow you to configure how empty values should be
presented. In the f_str call, use the empty parameter to specify how missing values should
present. A single element character vector should be provided. If the vector is unnamed,
that value will be used in the format string and fill the space similar to how the numbers will
display. Meaning - if your empty string is 'NA’ and your format string is *xx (xxx)’, the empty
values will populate as "NA (NA)’. If you name the character vector in the ’empty’ parameter
".overall’, like empty = c(.overall=""), then that exact string will fill the value instead. For
example, providing 'NA’ will instead create the formatted string as "NA’ exactly.

See the f_str documentation for more details about how this implementation works.

Value

The layer environment with the format string binding added

Returns the modified layer object.

Examples

Load in pipe
library(magrittr)

36 set_indentation

In a count layer
tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl) %>%
set_format_strings(f_str('xx (xx%)', n, pct))
) %%
build()

In a descriptive statistics layer
tplyr_table(mtcars, gear) %>%
add_layer(
group_desc(mpg) %>%
set_format_strings(
"n" = f_str("xx", n),

"Mean (SD)" = f_str("xx.x", mean, empty='NA"),
"Sp” = f_str("xx.xx", sd),
"Median” = f_str("xx.x", median),
"Q1, Q3" = f_str("xx, xx", ql1, g3, empty=c(.overall='NA")),
"Min, Max" = f_str("xx, xx", min, max),
"Missing” = f_str("xx", missing)
)
) %>%
build()

In a shift layer
tplyr_table(mtcars, am) %>%
add_layer(
group_shift(vars(row=gear, column=carb), by=cyl) %>%
set_format_strings(f_str(”"xxx (xx.xx%)", n, pct))
) %%
build()

set_indentation Set the option to prefix the row_labels in the inner count_layer

Description
When a count layer uses nesting (i.e. triggered by set_nest_count), the indentation argument’s
value will be used as a prefix for the inner layer’s records

Usage

set_indentation(e, indentation)

Arguments

e A count_layer object

indentation A character to prefix the row labels in an inner count layer

set_missing_count 37

Value

The modified count_layer environment

set_missing_count Set the display for missing strings

Description

Controls how missing counts are handled and displayed in the layer

Usage

set_missing_count(e, fmt = NULL, sort_value = NULL, denom_ignore = FALSE, ...)
Arguments

e A count_layer object

fmt An f_str object to change the display of the missing counts

sort_value A numeric value that will be used in the ordering column. This should be nu-

meric. If it is not supplied the ordering column will be the maximum value of
what appears in the table plus one.

denom_ignore A boolean. Specifies Whether or not to include the missing counts specified
within the ... parameter within denominators. If set to TRUE, the values speci-
fied within ... will be ignored.

Parameters used to note which values to describe as missing. Generally NA
and "Missing" would be used here. Parameters can be named character vectors
where the names become the row label.

Value

The modified layer

Examples

library(magrittr)
library(dplyr)

mtcars2 <- mtcars %>%
mutate_all(as.character)
mtcars2[mtcars$cyl == 6, "cyl”] <- NA

tplyr_table(mtcars2, gear) %>%
add_layer(
group_count(cyl) %>%
set_missing_count(f_str("xx
) %>%
build()

n

, n), Missing = NA)

38

set_order_count_method

set_nest_count Set the option to nest count layers

Description

If set to TRUE, the second variable specified in target_var will be nested inside of the first vari-
able. This allows you to create displays like those commonly used in adverse event tables, where
one column holds both the labels of the outer categorical variable and the inside event variable (i.e.
AEBODSYS and AEDECOD).

Usage

set_nest_count(e, nest_count)

Arguments

e A count_layer object

nest_count A logical value to set the nest option
Value

The modified layer

set_order_count_method
Set the ordering logic for the count layer

Description

The sorting of a table can greatly vary depending on the situation at hand. For count layers, when
creating tables like adverse event summaries, you may wish to order the table by descending occur-
rence within a particular treatment group. But in other situations, such as AEs of special interest, or
subject disposition, there may be a specific order you wish to display values. Tplyr offers solutions
to each of these situations.

Instead of allowing you to specify a custom sort order, Tplyr instead provides you with order vari-
ables that can be used to sort your table after the data are summarized. Tplyr has a default order
in which the table will be returned, but the order variables will always persist. This allows you to
use powerful sorting functions like arrange to get your desired order, and in double programming
situations, helps your validator understand the how you achieved a particular sort order and where
discrepancies may be coming from.

When creating order variables for a layer, for each "by’ variable Tplyr will search for a <VAR>N
version of that variable (i.e. VISIT <-> VISITN, PARAM <-> PARAMN). If available, this variable
will be used for sorting. If not available, Tplyr will created a new ordered factor version of that
variable to use in alphanumeric sorting. This allows the user to control a custom sorting order by

set_order_count_method 39

leaving an existing <VAR>N variable in your dataset if it exists, or create one based on the order in
which you wish to sort - no custom functions in Tplyr required.

Ordering of results is where things start to differ. Different situations call for different meth-
ods. Descriptive statistics layers keep it simple - the order in which you input your formats using
set_format_strings is the order in which the results will appear (with an order variable added).
For count layers, Tplyr offers three solutions: If there is a <VAR>N version of your target variable,
use that. If not, if the target variable is a factor, use the factor orders. Finally, you can use a spe-
cific data point from your results columns. The result column can often have multiple data points,
between the n counts, percent, distinct n, and distinct percent. Tplyr allows you to choose which of
these values will be used when creating the order columns for a specified result column (i.e. based
on the treat_var and cols arguments). See the ’Sorting a Table’ section for more information.

Shift layers sort very similarly to count layers, but to order your row shift variable, use an ordered
factor.

Usage

set_order_count_method(e, order_count_method)
set_ordering_cols(e, ...)

set_result_order_var(e, result_order_var)

Arguments

e A count_layer object

order_count_method
The logic determining how the rows in the final layer output will be indexed.
Options are "bycount’, ’byfactor’, and *byvarn’.
Unquoted variables used to select the columns whose values will be extracted
for ordering.

result_order_var
The numeric value the ordering will be done on. This can be either n, distinct_n,
pct, or distinct_pct. Due to the evaluation of the layer you can add a value
that isn’t actually being evaluated, if this happens this will only error out in the
ordering.

Value

Returns the modified layer object. The *ord_’" columns are added during the build process.

Sorting a Table

When a table is built, the output has several ordering(ord_) columns that are appended. The first
represents the layer index. The index is determined by the order the layer was added to the table.
Following are the indices for the by variables and the target variable. The by variables are ordered
based on:

1. The ‘by* variable is a factor in the target dataset

40 set_order_count_method

2. If the variable isn’t a factor, but has a <VAR>N variable (i.e. VISIT -> VISITN, TRT ->
TRTN)

3. If the variable is not a factor in the target dataset, it is coerced to one and ordered alphabeti-
cally.

The target variable is ordered depending on the type of layer. See more below.

Ordering a Count Layer

There are many ways to order a count layer depending on the preferences of the table programmer.
Tplyr supports sorting by a descending amount in a column in the table, sorting by a <VAR>N
variable, and sorting by a custom order. These can be set using the ‘set_order_count_method*
function.

Sorting by a numeric count A selected numeric value from a selected column will be indexed
based on the descending numeric value. The numeric value extracted defaults to n’ but can
be changed with ‘set_result_order_var‘. The column selected for sorting defaults to the first
value in the treatment group variable. If there were arguments passed to the *cols’ argument
in the table those must be specified with ‘set_ordering_columns".

Sorting by a ’varn’ variable If the treatment variable has a <VAR>N variable. It can be indexed
to that variable.

Sorting by a factor(Default) If a factor is found for the target variable in the target dataset that is
used to order, if no factor is found it is coerced to a factor and sorted alphabetically.

Sorting a nested count layer If two variables are targeted by a count layer, two methods can be
passed to ‘set_order_count®. If two are passed, the first is used to sort the blocks, the second is
used to sort the "inside" of the blocks. If one method is passed, that will be used to sort both.

Ordering a Desc Layer

The order of a desc layer is mostly set during the object construction. The by variables are resolved
and index with the same logic as the count layers. The target variable is ordered based on the format
strings that were used when the layer was created.

Examples

library(dplyr)

Default sorting by factor
t <- tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl)
)
build(t)

Sorting by <VAR>N
mtcars$cyIN <- mtcars$cyl
t <- tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl) %>%
set_order_count_method("byvarn”)

set_outer_sort_posi tion

)

Sorting by row count
t <- tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl) %>%
set_order_count_method("bycount") %>%
Orders based on the 6 gear group
set_ordering_cols(6)

)

Sorting by row count by percentages
t <- tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl) %>%
set_order_count_method("bycount”) %>%
set_result_order_var(pct)

)

Sorting when you have column arguments in the table
t <- tplyr_table(mtcars, gear, cols = vs) %>%
add_layer(
group_count(cyl) %>%
Uses the fourth gear group and the @ vs group in ordering
set_ordering_cols(4, 0)

)

Using a custom factor to order

mtcars$cyl <- factor(mtcars$cyl, c(6, 4, 8))

t <- tplyr_table(mtcars, gear) %>%

add_layer(
group_count(cyl) %>%

This is the default but can be used to change the setting if it is
#set at the table level.
set_order_count_method("byfactor")

41

set_outer_sort_position
Set the value of a outer nested count layer to Inf or -Inf

Description

Set the value of a outer nested count layer to Inf or -Inf

Usage

set_outer_sort_position(e, outer_sort_position)

42 set_total row_label

Arguments

e A count_layer object
outer_sort_position

Either ’asc’ or "desc’. If desc the final ordering helper will be set to Inf, if *asc’
the ordering helper is set to -Inf.

Value

The modified count layer.

set_total_row_label Set the label for the total row

Description

The row label for a total row defaults to "Total", however this can be overriden using this function.

Usage

set_total_row_label(e, total_row_label)

Arguments

e A count_layer object

total_row_label
A character to label the total row

Value

The modified count_layer object

Examples

Load in pipe
library(magrittr)

t <- tplyr_table(mtcars, gear) %>%
add_layer(
group_count(cyl) %>%
add_total_row() %>%
set_total_row_label("Total Cyl")
)
build(t)

Tplyr 43

Tplyr A grammar of summary data for clinical reports

Description

‘r lifecycle::badge("experimental")*

Details

"Tplyr’ is a package dedicated to simplifying the data manipulation necessary to create clinical
reports. Clinical data summaries can often be broken down into two factors - counting discrete
variables (or counting shifts in state), and descriptive statistics around a continuous variable. Many
of the reports that go into a clinical report are made up of these two scenarios. By abstracting this
process away, “Tplyr’ allows you to rapidly build these tables without worrying about the underlying
data manipulation.

"Tplyr’ takes this process a few steps further by abstracting away most of the programming that goes
into proper presentation, which is where a great deal of programming time is spent. For example,
"Tplyr’ allows you to easily control:

String formatting Different reports warrant different presentation of your strings. Programming
this can get tedious, as you typically want to make sure that your decimals properly align.
"Tplyr’ abstracts this process away and provides you with a simple interface to specify how
you want your data presented

Treatment groups Need a total column? Need to group summaries of multiple treatments? *Tplyr’
makes it simple to add additional treatment groups into your report

Denominators n (%) counts often vary based on the summary being performed. *Tplyr’ allows
you to easily control what denominators are used based on a few common scenarios

Sorting Summarizing data is one thing, but ordering it for presentation. Tplyr automatically de-
rives sorting variable to give you the data you need to order your table properly. This process
is flexible so you can easily get what you want by leveraging your data or characteristics of R.

Another powerful aspect of *Tplyr’ are the objects themselves. *Tplyr’ does more than format
your data. Metadata about your table is kept under the hood, and functions allow you to access
information that you need. For example, *Tplyr’ allows you to calculate and access the raw numeric
data of calculations as well, and easily pick out just the pieces of information that you need.

Lastly, *Tplyr’ was built to be flexible, yet intuitive. A common pitfall of building tools like this is
over automation. By doing to much, you end up not doing enough. 'Tplyr’ aims to hit the sweet
spot in between. Additionally, we designed our function interfaces to be clean. Modifier functions
offer you flexibility when you need it, but defaults can be set to keep the code concise. This allows
you to quickly assemble your table, and easily make changes where necessary.

Author(s)

Maintainer: Mike Stackhouse <mike.stackhouse@atorusresearch.com> (ORCID)

Authors:

https://orcid.org/0000-0001-6030-723X

44 Tplyr

¢ Eli Miller <Eli.Miller@AtorusResearch.com> (ORCID)
* Ashley Tarasiewicz <Ashley.Tarasiewicz@atorusresearch.com>

* Nathan Kosiba <Nathan.Kosiba@atorusresearch.com> (ORCID)
Other contributors:

 Atorus Research LLC [copyright holder]

See Also
Useful links:

* https://github.com/atorus-research/Tplyr
* Report bugs at https://github.com/atorus-research/Tplyr/issues

Examples

Load in pipe
library(magrittr)

Use just the defaults
tplyr_table(mtcars, gear) %>%
add_layer(
group_desc(mpg, by=cyl)
) %%
add_layer(
group_count(carb, by=cyl)
) %%
build()

Customize and modify
tplyr_table(mtcars, gear) %>%
add_layer(
group_desc(mpg, by=cyl) %>%
set_format_strings(

"n" = f_str("xx", n),

"Mean (SD)" = f_str("a.a+1 (a.a+2)", mean, sd, empty='NA"),
"Median” = f_str("a.a+1"”, median),

"Q1, Q3" = f_str("a, a", ql1, g3, empty=c(.overall='NA")),

"Min, Max" = f_str("a, a", min, max),
"Missing" = f_str("xx", missing)
)
) %%
add_layer(

group_count(carb, by=cyl) %>%
add_risk_diff(

C('sl, I3|)’
C('4I, I3V)
) %%

set_format_strings(
n_counts = f_str('xx (xx%)', n, pct),
riskdiff = f_str('xx.xxx (xx.xxx, xx.xxx)', dif, low, high)

https://orcid.org/0000-0002-2127-9456
https://orcid.org/0000-0001-5359-4234
https://github.com/atorus-research/Tplyr
https://github.com/atorus-research/Tplyr/issues

tplyr_layer 45

) %%
set_order_count_method("bycount”) %>%
set_ordering_cols('4') %>%
set_result_order_var(pct)

) %%

build()

A Shift Table
tplyr_table(mtcars, am) %>%
add_layer(
group_shift(vars(row=gear, column=carb), by=cyl) %>%
set_format_strings(f_str(”"xxx (xx.xx%)", n, pct))
) %%
build()

tplyr_layer Create a tplyr_layer object

Description

This object is the workhorse of the tplyr package. A tplyr_layer can be thought of as a block,
or "layer" of a table. Summary tables typically consist of different sections that require different
summaries. When programming these section, your code will create different layers that need to be
stacked or merged together. A tplyr_layer is the container for those isolated building blocks.

When building the tplyr_table, each layer will execute independently. When all of the data
processing has completed, the layers are brought together to construct the output.

tplyr_layer objects are not created directly, but are rather created using the layer constructor
functions group_count, group_desc, and group_shift.

Usage
tplyr_layer(parent, target_var, by, where, type, ...)
Arguments
parent tplyr_table or tplyr_layer. Required. The parent environment of the layer.
This must be either the tplyr_table object that the layer is contained within,
or another tplyr_layer object of which the layer is a subgroup.
target_var Symbol. Required, The variable name on which the summary is to be performed.
Must be a variable within the target dataset. Enter unquoted - i.e. target_var =
AEBODSYS.
by A string, a variable name, or a list of variable names supplied using dplyr: :vars
where Call. Filter logic used to subset the target data when performing a summary.
type "count", "desc", or "shift". Required. The category of layer - either "counts"
for categorical counts, "desc" for descriptive statistics, or "shift" for shift table
counts

Additional arguments

46 tplyr_table

Value

A tplyr_layer environment that is a child of the specified parent. The environment contains the
object as listed below.

tplyr_layer Core Object Structure
type This is an attribute. A string indicating the layer type, which controls the summary that will
be performed.
target_var A quosure of a name, which is the variable on which a summary will be performed.

by A list of quosures representing either text labels or variable names used in grouping. Variable
names must exist within the target dataset Text strings submitted do not need to exist in the
target dataset.

cols A list of quosures used to determine the variables that are used to display in columns.

where A quosure of a call that containers the filter logic used to subset the target dataset. This
filtering is in addition to any subsetting done based on where criteria specified in tplyr_table

layers A list with class tplyr_layer_container. Initialized as empty, but serves as the container
for any sublayers of the current layer. Used internally.

Different layer types will have some different bindings specific to that layer’s needs.

See Also
tplyr_table

Examples
tab <- tplyr_table(iris, Sepal.Width)
1 <- group_count(tab, by=vars('Label Text', Species),

target_var=Species, where= Sepal.Width < 5.5,
cols = Species)

tplyr_table Create a Tplyr table object

Description

The tplyr_table object is the main container upon which a Tplyr table is constructed. Tplyr
tables are made up of one or more layers. Each layer contains an instruction for a summary to
be performed. The tplyr_table object contains those layers, and the general data, metadata, and
logic necessary.

Usage

tplyr_table(target, treat_var, where = TRUE, cols = vars())

tplyr_table

Arguments

target
treat_var

where

cols

Details

47

Dataset upon which summaries will be performed
Variable containing treatment group assignments. Supply unquoted.

A general subset to be applied to all layers. Supply as programming logic (i.e.
x<5&y==10)

A grouping variable to summarize data by column (in addition to treat_var).
Provide multiple column variables by using vars

When a tplyr_table is created, it will contain the following bindings:

* target - The dataset upon which summaries will be performed

* pop_data - The data containing population information. This defaults to the target dataset

* cols - A categorical variable to present summaries grouped by column (in addition to treat_var)

¢ table_where - The where parameter provided, used to subset the target data

* treat_var - Variable used to distinguish treatment groups.

¢ header_n - Default header N values based on treat_var

* pop_treat_var - The treatment variable for pop_data (if different)

* layers - The container for individual layers of a tplyr_table

* treat_grps - Additional treatment groups to be added to the summary (i.e. Total)

tplyr_table allows you a basic interface to instantiate the object. Modifier functions are available
to change individual parameters catered to your analysis. For example, to add a total group, you
can use the add_total_group.

In future releases, we will provide vigenttes to fully demonstrate these capabilities.

Value

A tplyr_table object

Examples

tab <- tplyr_table(iris, Species, where = Sepal.Length < 5.8)

48 treat_var

treat_var Return or set the treatment variable binding

Description

Return or set the treatment variable binding

Usage

treat_var(table)

set_treat_var(table, treat_var)

Arguments
table A tplyr_table object to set or return treatment variable the table is split by.
treat_var Variable containing treatment group assignments. Supply unquoted.

Value

For tplyr_treat_var the treat_var binding of the tplyr_table object. For set_tplyr_treat_var
the modified object.

Examples

tab <- tplyr_table(mtcars, cyl)

set_treat_var(tab, gear)

Index

* Layer Construction Functions
group_count, 22

x Layer attachment
add_layer, 5

x Layer construction functions
tplyr_layer, 45

add_column_headers, 3
add_layer, 5, 23
add_layers, 23
add_layers (add_layer), 5
add_risk_diff, 6, 35
add_total_group, 7,47
add_total_group (add_treat_grps), 9
add_total_row, 8
add_treat_grps, 7,9
apply_row_masks, 11
arrange, 38

build, 12
f_str, 7,13, 30, 34, 35

get_by, 14

get_count_layer_formats
(get_desc_layer_formats), 15

get_desc_layer_formats, 15

get_numeric_data, 5, 12, 16

get_pop_where (get_where. tplyr_layer),
21

get_precision_by, 17

get_precision_on, 18

get_shift_layer_formats
(get_desc_layer_formats), 15

get_stats_data, 5, 19

get_target_var, 20

get_where (get_where. tplyr_layer), 21

get_where.tplyr_layer, 21

group_count, 22, 45

group_desc, 45

49

group_desc (group_count), 22
group_shift, 45
group_shift (group_count), 22

header_n, 24
header_n<- (header_n), 24

keep_levels, 25

pop_data, 26

pop_data<- (pop_data), 26
pop_treat_var, 27
process_formatting, 27
process_statistic_data, 28
process_statistic_formatting, 28
process_summaries, 29
prop.test, 6, 7

set_by (get_by), 14
set_count_layer_formats
(get_desc_layer_formats), 15
set_custom_summaries, /4, 23, 29
set_denom_ignore, 32
set_denom_where, 33
set_denoms_by, 23, 31
set_desc_layer_formats
(get_desc_layer_formats), 15
set_distinct_by, 23, 33
set_format_strings, 7, 14, 23, 30, 34, 39
set_header_n (header_n), 24
set_indentation, 36
set_missing_count, 37
set_nest_count, 36, 38
set_order_count_method, 38
set_ordering_cols
(set_order_count_method), 38
set_outer_sort_position, 41
set_pop_data (pop_data), 26
set_pop_treat_var (pop_treat_var), 27
set_pop_where (get_where. tplyr_layer),
21

50 INDEX

set_precision_by (get_precision_by), 17

set_precision_on (get_precision_on), 18

set_result_order_var
(set_order_count_method), 38

set_shift_layer_formats
(get_desc_layer_formats), 15

set_target_var (get_target_var), 20

set_total_row_label, 42

set_treat_var (treat_var), 48

set_where (get_where. tplyr_layer), 21

Tplyr, 43

Tplyr-package (Tplyr), 43
tplyr_layer, 23, 45
tplyr_table, 23, 46, 46
treat_grps (add_treat_grps), 9
treat_var, 48

vars, 22, 23,47

	add_column_headers
	add_layer
	add_risk_diff
	add_total_row
	add_treat_grps
	apply_row_masks
	build
	f_str
	get_by
	get_desc_layer_formats
	get_numeric_data
	get_precision_by
	get_precision_on
	get_stats_data
	get_target_var
	get_where.tplyr_layer
	group_count
	header_n
	keep_levels
	pop_data
	pop_treat_var
	process_formatting
	process_statistic_data
	process_statistic_formatting
	process_summaries
	set_custom_summaries
	set_denoms_by
	set_denom_ignore
	set_denom_where
	set_distinct_by
	set_format_strings
	set_indentation
	set_missing_count
	set_nest_count
	set_order_count_method
	set_outer_sort_position
	set_total_row_label
	Tplyr
	tplyr_layer
	tplyr_table
	treat_var
	Index

