Package ‘blockCV’

June 17, 2021

Type Package
Title Spatial and Environmental Blocking for K-Fold Cross-Validation

Version 2.1.4
Date 2021-06-17

URL https://github.com/rvalavi/blockCV
Maintainer Roozbeh Valavi <valavi.r@gmail.com>

Description Creating spatially or environmentally separated folds for cross-validation to provide a ro-
bust error estimation in spatially structured environments; Investigating and visualising the effec-
tive range of spatial autocorrelation in continuous raster covariates to find an initial realistic dis-
tance band to separate training and testing datasets spatially de-
scribed in Valavi, R. et al. (2019) <doi:10.1111/2041-210X.13107>.

License GPL-3

Encoding UTF-8

Depends R (>=3.5.0)

Imports raster (>= 2.5-8), sf (>= 0.8-0), progress
RoxygenNote 7.1.1

Suggests knitr, ggplot2 (>=3.2.1), cowplot, automap (>= 1.0-14),
rgeos, rgdal, future, future.apply, shiny (>= 1.0.3),
shinydashboard, geosphere, methods, rmarkdown, testthat, covr

VignetteBuilder knitr
NeedsCompilation no

Author Roozbeh Valavi [aut, cre],
Jane Elith [aut],
José Lahoz-Monfort [aut],
Gurutzeta Guillera-Arroita [aut]

Repository CRAN
Date/Publication 2021-06-17 04:50:02 UTC

https://github.com/rvalavi/blockCV
https://doi.org/10.1111/2041-210X.13107

2 blockCV

R topics documented:

blockCV L e 2
buffering e 3
envBlock L 5
foldExplorer L 8
rangeExplorer 9
spatialAutoRange L. e e 11
spatialBlocko 13
Index 18
blockCV blockCV: A package for generating spatially or environmentally sep-
arated folds for k-fold cross-validation of species distribution mod-
elling.
Description

Simple random selection of training and testing folds in the structured environment leads to an un-
derestimation of error in the evaluation of spatial predictions and may result in inappropriate model
selection (Telford and Birks, 2009; Roberts et al., 2017). The use of spatial and environmental
blocks to separate training and testing sets has been suggested as a good strategy for realistic error
estimation in datasets with dependence structures, and more generally as a robust method for esti-
mating the predictive performance of models used to predict mapped distributions (Roberts et al.,
2017). Package *blockCV’ provides functions to separate train and test sets using buffers, spatial
and environmental blocks (Valavi et al., 2019). It provides several options for how those blocks are
constructed. It also has a function that applies geostatistical techniques to investigate the existing
level of spatial autocorrelation in the covariates to inform the choice of a suitable distance band by
which to separate the data sets. In addition, some visualization tools are provided to help the user
choose the block size and explore generated folds. The package has been written with species dis-
tribution modelling in mind, and the functions allow for a number of common scenarios (including
presence-absence and presence-background species data, rare and common species, raster data for
predictor variables). Although it can be applied to any spatial modelling e.g. multi-class responses
for remote sensing image classification.

Author(s)

Roozbeh Valavi, Jane Elith, José Lahoz-Monfort and Gurutzeta Guillera-Arroita

References

Roberts et al., (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography. 40: 913-929.

Telford, R.J., Birks, H.J.B., (2009). Evaluation of transfer functions in spatially structured environ-
ments. Quat. Sci. Rev. 28, 1309-1316.

Valavi, R., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2019). blockCV: An R package

for generating spatially or environmentally separated folds for k-fold cross-validation of species dis-
tribution models. Methods in Ecology and Evolution, 10(2), 225-232. doi:10.1111/2041-210X.13107.

buffering 3

See Also

spatialBlock, buffering and envBlock for blocking strategies.

buffering Use distance (buffer) around records to separate train and test folds

Description

This function generates spatially separated train and test folds by considering buffers of the specified
distance around each observation point. This approach is a form of leave-one-out cross-validation.
Each fold is generated by excluding nearby observations around each testing point within the spec-
ified distance (ideally the range of spatial autocorrelation, see spatialAutoRange). In this method,
the testing set never directly abuts a training presence or absence (0s and 1s i.e. the response class).
For more information see the details section.

Usage
buffering(
speciesData,
species = NULL,
theRange,
spDataType = "PA",
addBG = TRUE,
progress = TRUE
)
Arguments
speciesData A simple features (sf) or SpatialPoints object containing species data (response
variable).
species Character. Indicating the name of the field in which species data (binary re-
sponse i.e. 0 and 1) is stored. If speceis = NULL the presence and absence data
(response variable) will be treated the same and only training and testing records
will be counted. This can be used for multi-class responses such as land cover
classes for remote sensing image classification, but it is not necessary. Do not
use this argument when the response variable is continuous or count data.
theRange Numeric value of the specified range by which the training and testing datasets
are separated. This distance should be in metres no matter what the coordinate
system is. The range can be explored by spatialAutoRange.
spDataType Character input indicating the type of species data. It can take two values, PA
for presence-absence data and PB for presence-background data, when species
argument is not NULL. See the details section for more information on these two
approaches.
addBG Logical. Add background points to the test set when spDataType = "PB".

progress Logical. If TRUE a progress bar will be shown.

4 buffering

Details

When working with presence-background (presence and pseudo-absence) data (specified by spDataType
argument), only presence records are used for specifying the folds. Consider a target presence point.

The buffer is defined around this target point, using the specified range (theRange). The testing fold
comprises the target presence point and all background points within the buffer (this is the default. If
addBG = FALSE the bacground points are ignored). Any non-target presence points inside the buffer

are excluded. All points (presence and background) outside of buffer are used for the training set.

The methods cycles through all the presence data, so the number of folds is equal to the number of
presence points in the dataset.

For presence-absence data, folds are created based on all records, both presences and absences. As
above, a target observation (presence or absence) forms a test point, all presence and absence points
other than the target point within the buffer are ignored, and the training set comprises all presences
and absences outside the buffer. Apart from the folds, the number of training-presence, training-
absence, testing-presence and testing-absence records is stored and returned in the records table.
If species = NULL (no column with Os and 1s is defined), the procedure is like presence-absence
data. All other types of data (continuous, count or multi-class responses) should be used like this.

Value

An object of class S3. A list of objects including:
* folds - a list containing the folds. Each fold has two vectors with the training (first) and testing
(second) indices
* k - number of the folds
* range - the distance band to separated trainig and testing folds)
* species - the name of the species (column), if provided
 dataType - species data type

* records - a table with the number of points in each category of training and testing

See Also

spatialAutoRange for selecting buffer distance; spatialBlock and envBlock for alternative block-
ing strategies; foldExplorer for visualisation of the generated folds.

Examples

import presence-absence species data

PA <- read.csv(system.file("extdata”, "PA.csv", package = "blockCV"))
coordinate reference system

Zone55s <- "+proj=utm +zone=55 +south +ellps=GRS8@ +units=m +no_defs
make a sf object from data.frame

pa_data <- sf::st_as_sf(PA, coords = c("x", "y"), crs = Zoneb5s)

n

buffering with presence-absence data
bf1 <- buffering(speciesData= pa_data,
species= "Species”,

envBlock

theRange= 70000,
spDataType = "PA",
progress = TRUE)

import presence-background species data

PB <- read.csv(system.file("extdata”, "PB.csv", package = "blockCV"))
make a sf object from data.frame

pb_data <- sf::st_as_sf(PB, coords = c("x", "y"), crs = Zone55s)

buffering with presence-background data
bf2 <- buffering(speciesData= pb_data,

species= "Species”,

theRange= 70000,

spDataType = "PB”,

addBG = TRUE, # add background data to testing folds
progress = TRUE)

buffering with no species attribute
bf3 <- buffering(speciesData = pa_data,

theRange = 70000)

envBlock

Use environmental clustering to separate train and test folds

Description

Environmental blocking for cross-validation. This function uses clustering methods to specify sets
of similar environmental conditions based on the input covariates. Species data corresponding to
any of these groups or clusters are assigned to a fold. This function does the clustering in raster
space and species data. Clustering is done using kmeans for both approaches. This function works

on single or multiple raster files; multiple rasters need to be in a raster brick or stack format.

Usage

envBlock(

rasterLayer,
speciesData,

species
k =5,

= NULL,

standardization = "normal”,
rasterBlock = TRUE,
sampleNumber = 10000,
biomod2Format = TRUE,
numLimit = @,

verbose = TRUE

6 envBlock

Arguments

rasterLayer A raster object of covariates to identify environmental groups.

speciesData A simple features (sf) or SpatialPoints object containing species data (response
variable).

species Character. Indicating the name of the field in which species data (binary re-
sponse i.e. 0 and 1) is stored. If speceis = NULL the presence and absence data
(response variable) will be treated the same and only training and testing records
will be counted. This can be used for multi-class responses such as land cover
classes for remote sensing image classification, but it is not necessary. Do not
use this argument when the response variable is continuous or count data.

k Integer value. The number of desired folds for cross-validation. The default is k
= 5.

standardization
Standardize input raster layers. Three possible inputs are "normal" (the default),
"standard" and "none". See details for more information.

rasterBlock Logical. If TRUE, the clustering is done in the raster layer rather than species

data. See details for more information.
sampleNumber Integer. The number of samples from raster layers to build the clusters.

biomod2Format Logical. Creates a matrix of folds that can be directly used in the biomod2
package as a DataSplitTable for cross-validation.

numLimit Integer value. The minimum number of points in each category of data (train_0,
train_1, test_0 and test_I). Shows a message if the number of points in any of
the folds happens to be less than this number.

verbose Logical. To print the report of the recods per fold.

Details

As k-means algorithms use Euclidean distance to estimate clusters, the input covariates should be
quantitative variables. Since variables with wider ranges of values might dominate the clusters and
bias the environmental clustering (Hastie et al., 2009), all the input rasters are first standardized
within the function. This is done either by normalizing based on subtracting the mean and dividing
by the standard deviation of each raster (the default) or optionally by standardizing using linear
scaling to constrain all raster values between 0 and 1.

By default, the clustering is done in the raster space. In this approach the clusters will be con-
sistent throughout the region and across species (in the same region). However, this may result
in a cluster(s) that covers none of the species records (the spatial location of response samples),
espcially when species data is not dispersed throughout the region or the number of clusters (k or
folds) is high. In this case, the number of folds is less than specified k. If rasterBlock = FALSE,
the clustering will be done in species points and the number of the folds will be the same as k.

Note that the input raster layer should cover all the species points, otherwise an error will rise. The
records with no raster value should be deleted prior to the analysis or another raster layer would be
provided.

envBlock 7

Value

An object of class S3. A list of objects including:
» folds - a list containing the folds. Each fold has two vectors with the training (first) and testing
(second) indices

* foldID - a vector of values indicating the number of the fold for each observation (each number
corresponds to the same point in species data)

* biomodTable - a matrix with the folds to be used in biomod2 package
* k - number of the folds
* species - the name of the species (column), if provided

* records - a table with the number of points in each category of training and testing

References

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data Mining,
Inference, and Prediction (2nd ed., Vol. 1). Springer series in statistics New York.

Roberts et al., (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography. 40: 913-929.

See Also

spatialBlock and buffering for alternative blocking strategies; foldExplorer for visualisation
of the generated folds.

For DataSplitTable see BIOMOD_cv in biomod2 package. for clustering.

Examples

load package data

awt <- raster::brick(system.file("extdata”, "awt.grd"”, package = "blockCV"))
import presence-absence species data

PA <- read.csv(system.file("extdata”, "PA.csv", package = "blockCV"))

make a sf object from data.frame

pa_data <- sf::st_as_sf(PA, coords = c("x", "y"), crs = raster::crs(awt))

environmental clustering
eb <- envBlock(rasterLayer = awt,
speciesData = pa_data,

species = "Species"”, # name of the column with response
k =5,
standardization = "standard”,

rasterBlock = TRUE)

8 foldExplorer

foldExplorer Explore the generated folds

Description
A function for visualising the generated folds on a map, and allowing interactive exploration of the
data in the folds, using the RStudio Shiny app.

Usage

foldExplorer(blocks, rasterlLayer, speciesData)

Arguments
blocks An SpatialBlock, EnvironmentalBlock or BufferedBlock object.
rasterLayer A raster object as background map for visualisation.
speciesData A simple features (sf) or SpatialPoints object containing species data (response
variable).
Value

An interactive map showing folds and the species data, that can be used to explore folds. Note that
this can also be opened in a web browser window. When you return to the R console, press "Esc"
to return to the prompt.

See Also

spatialBlock, buffering and envBlock

Examples

if(interactive()){

load package data

awt <- raster::brick(system.file("extdata”, "awt.grd”, package = "blockCV"))
import presence-absence species data

PA <- read.csv(system.file("extdata”, "PA.csv", package = "blockCV"))

make a sf object from data.frame

pa_data <- sf::st_as_sf(PA, coords = c("x", "y"), crs = raster::crs(awt))

spatial blocking by specified range and random assignment
sb <- spatialBlock(speciesData = pa_data,

species = "Species”,

rasterLayer = awt,

theRange = 70000,

k =5,

selection = "random”,

rangeExplorer 9

iteration = 100)
foldExplorer(sb, awt, pa_data)

buffering with presence-absence data
bf <- buffering(speciesData= pa_data,
species= "Species”, # to count the number of presences and absences
theRange= 70000,
spDataType = "PA",
progress = TRUE)

foldExplorer(bf, awt, pa_data)

environmental clustering

eb <- envBlock(rasterLayer = awt,
speciesData = pa_data,
species = "Species”,
k =5)

foldExplorer(eb, awt, pa_data)

}

rangeExplorer Explore spatial block size

Description

This function assists selection of block size. It allows the user to visualise the blocks interactively,
viewing the impact of block size on number and arrangement of blocks in the landscape (and op-
tionally on the distribution of species data in those blocks). Slide to the slected block size, and click
Apply Changes to change the block size.

Usage

rangeExplorer(
rasterLayer,
speciesData = NULL,
species = NULL,
rangeTable = NULL,
minRange = NULL,
maxRange = NULL

Arguments

rasterLayer A raster object as background map for visualisation.

10 rangeExplorer
speciesData A simple features (sf) or SpatialPoints object containing species data (response
variable). If provided, the species data will be shown on the map.
species Character value indicating the name of the field in which the species data (re-
sponse variable e.g. Os and 1s) are stored. If provided, species presence and
absence data will be shown in different colours.
rangeTable A data.frame created by spatialAutoRange function containing spatial auto-
correlation parameters of all covariates.
minRange A numeric value to set the minimum possible range for creating spatial blocks.
It is used to limit the searching domain of spatial block size.
maxRange A numeric value to set the maximum possible range for creating spatial blocks.
It is used to limit the searching domain of spatial block size.
Details

The only required argument for this function is the rasterLayer. The rest are optional. If the
rangeTable is provided, the minimum, maximum and initial ranges for searching the size of spatial
blocks will be selected based on the spatial autocorrelation range of covariates. It is also possible
to restrict the allowable range of block sizes by using the minRange and maxRanege arguments.

Value

An interactive map with blocks (and optionally species data) superimposed. Note that this can also
be opened in a web browser window. When you return to the R console, press "Esc" to return to the

prompt.

See Also

spatialBlock; spatialAutoRange for the rangeTable

Examples

if(interactive()){

load package data

awt <- raster::brick(system.file("extdata”, "awt.grd”, package = "blockCV"))
import presence-absence species data

PA <- read.csv(system.file("extdata”, "PA.csv"”, package = "blockCV"))

make a sf object from data.frame

pa_data <- sf::st_as_sf(PA, coords = c("x", "y"), crs = raster::crs(awt))

rangeExplorer(rasterLayer = awt) # the only mandatory input

add species data to add them on the map
rangeExplorer(rasterLayer = awt,
speciesData = pa_data,
species = "Species”,
rangeTable = NULL,
minRange = 30000, # limit the search domain
maxRange = 100000)

spatial AutoRange 11

spatialAutoRange Measure spatial autocorrelation in the predictor raster files

Description

This function provides a quantitative basis for choosing block size. The spatial autocorrelation in
all continuous predictor variables available as raster layers is assessed and reported. The function
estimates spatial autocorrelation ranges of all input raster layers. This is the range over which
observations are independent and is determined by constructing the empirical variogram, a funda-
mental geostatistical tool for measuring spatial autocorrelation. The empirical variogram models
the structure of spatial autocorrelation by measuring variability between all possible pairs of points
(O’Sullivan and Unwin, 2010). Results are plotted. See the details section for further information.

Usage

spatialAutoRange(
rasterlLayer,
sampleNumber = 5000L,
border = NULL,
speciesData = NULL,
doParallel = FALSE,
nCores = NULL,
showPlots = TRUE,
degMetre = 111325,
maxpixels = 1e+05,
plotVariograms = FALSE,
progress = TRUE

Arguments

rasterLayer A raster object of covariates to find spatial autocorrelation range.

sampleNumber Integer. The number of sample points of each raster layer to fit variogram mod-
els. It is 5000 by default, however it can be increased by user to represent their
region well (relevant to the extent and resolution of rasters).

border A sf or SpatialPolygons object to clip the block based on it (optional).

speciesData A spatial or sf object (optional). If provided, the sampleNumber is ignored and
variograms are created based on species locations. This option is not recom-
mended if the species data is not evenly distributed across the whole study area
and/or the number of records is low.

doParallel Logical. Run in parallel when more than one raster layer is available. Given
multiple CPU cores, it is recommended to set it to TRUE when there is a large
number of rasters to process.

12 spatial AutoRange

nCores Integer. Number of CPU cores to run in parallel. If nCores =NULL half of
available cores in your machine will be used.

showPlots Logical. Show final plot of spatial blocks and autocorrelation ranges.

degMetre Numeric. The conversion rate of metres to degree. This is for constructing

spatial blocks for visualisation. When the input map is in geographic coordinate
system (decimal degrees), the block size is calculated based on deviding the
calculated range by this value to convert to the input map’s unit (by default
111325; the standard distance of a degree in metres, on the Equator).

maxpixels Number of random pixels to select the blocks over the study area.

plotVariograms Logical. Plot fitted variograms. This can also be done after the analysis. It is
FALSE by default.

progress Logical. Shows progress bar. It works only when doParallel = FALSE.

Details

The input raster layers should be continuous for computing the variograms and estimating the range
of spatial autocorrelation. The input rasters should also have a specified coordinate reference sys-
tem. However, if the reference system is not specified, the function attempts to guess it based on the
extent of the map. It assumes an unprojected reference system for layers with extent lying between
-180 and 180, and a projected reference system otherwise.

Variograms are calculated based on the distances between pairs of points, so unprojected rasters (in
degrees) will not give an accurate result (especially over large latitudinal extents). For unprojected
rasters, the great circle distance (rather than Euclidian distance) is used to calculate the spatial dis-
tances between pairs of points. To enable more accurate estimate, it is recommended to transform
unprojected maps (geographic coordinate system / latitude-longitude) to a projected metric refer-
ence system (e.g. UTM or Lambert) where it is possible. See autofitVariogram from automap
and variogram from gstat packages for further information.

Value

An object of class S3. A list object including:

* range - the suggested range, which is the median of all calculated ranges

* rangeTable - a table of input covariates names and their autocorrelation range
* plots - the output plot (the plot is shown by default)

e sampleNumber

* variograms - fitted variograms for all layers

References

O’Sullivan, D., Unwin, D.J., (2010). Geographic Information Analysis, 2nd ed. John Wiley &
Sons.

Roberts et al., (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography. 40: 913-929.

spatialBlock 13

Examples

load the example raster data
awt <- raster::brick(system.file("extdata”, "awt.grd"”, package = "blockCV"))

run the model in parallel

rangel <- spatialAutoRange(rasterLayer = awt,
sampleNumber = 5000, # number of cells to be used
doParallel = TRUE,
nCores = 2, # if NULL, it uses half of the CPU cores
plotVariograms = FALSE,
showPlots = TRUE)

run the model with no parallel

range3 <- spatialAutoRange(rasterLayer = awt,
sampleNumber = 5000,
doParallel = FALSE,
progress = TRUE)

show the result
summary (rangel)

spatialBlock Use spatial blocks to separate train and test folds

Description

This function creates spatially separated folds based on a pre-specified distance. It assigns blocks
to the training and testing folds randomly, systematically or in a checkerboard pattern. The
distance (theRange) should be in metres, regardless of the unit of the reference system of the input
data (for more information see the details section). By default, the function creates blocks according
to the extent and shape of the study area, assuming that the user has considered the landscape for the
given species and case study. Alternatively, blocks can solely be created based on species spatial
data. Blocks can also be offset so the origin is not at the outer corner of the rasters. Instead of
providing a distance, the blocks can also be created by specifying a number of rows and/or columns
and divide the study area into vertical or horizontal bins, as presented in Wenger & Olden (2012)
and Bahn & McGill (2012). Finally, the blocks can be specified by a user-defined spatial polygon
layer.

Usage

spatialBlock(
speciesData,
species = NULL,
rasterLayer = NULL,

14 spatialBlock

theRange = NULL,

rows = NULL,

cols = NULL,

k = 5L,

selection = "random”,
iteration = 100L,
blocks = NULL,
foldsCol = NULL,
numLimit = oL,
maskBySpecies = TRUE,
degMetre = 111325,
border = NULL,
showBlocks = TRUE,
biomod2Format = TRUE,

x0ffset = 0,
yOffset = 0,
seed = NULL,

progress = TRUE,
verbose = TRUE

)
Arguments

speciesData A simple features (sf) or SpatialPoints object containing species data (response
variable).

species Character (optional). Indicating the name of the column in which species data
(response variable e.g. Os and 1s) is stored. This argument is used fo make
folds with evenly distributed records. This option only works by random
fold selection and with binary or multi-class responses e.g. species presence-
absence/background or land cover classes for remote sensing image classifica-
tion. If speceis = NULL the response classes will be treated the same and only
training and testing records will be counted and balanced.

rasterLayer A raster object for visualisation (optional). If provided, this will be used to
specify the blocks covering the area.

theRange Numeric value of the specified range by which blocks are created and train-
ing/testing data are separated. This distance should be in metres. The range
could be explored by spatialAutoRange () and rangeExplorer () functions.

rows Integer value by which the area is divided into latitudinal bins.

cols Integer value by which the area is divided into longitudinal bins.

k Integer value. The number of desired folds for cross-validation. The default is k
=5.

selection Type of assignment of blocks into folds. Can be random (default), system-
atic, checkerboard, or predefined. The checkerboard does not work with user-
defined spatial blocks. If the selection = "predefined’, user-defined blocks and
foldsCol must be supplied

iteration Integer value. The number of attempts to create folds that fulfil the set require-

ment for minimum number of points in each trainig and testing fold (for each

spatialBlock

15

response class e.g. train_0, train_I, test_0 and test_I), as specified by species
and numLimit arguments.

blocks A sf or SpatialPolygons object to be used as the blocks (optional). This can be
a user defined polygon and it must cover all the species (response) points. If the
selection = ’predefined’, this argument (and foldsCol) must be supplied.

foldsCol Character. Indicating the name of the column (in user-defined blocks) in which
the associated folds are stored. This argument is necessary if you choose the
"predefined’ selection.

numLimit Integer value. The minimum number of points in each training and testing folds.
If numLimit = @, the most evenly dispersed number of records is chosen (given
the number of iteration). This option no longer accepts NULL as input. If it is
set to NULL, O is used instead.

maskBySpecies Since version 1.1, this option is always set to TRUE.

degMetre Integer. The conversion rate of metres to degree. See the details section for more
information.

border A sf or SpatialPolygons object to clip the block based on it (optional).

showBlocks Logical. If TRUE the final blocks with fold numbers will be created with ggplot
and plotted. A raster layer could be specified in rasterlayer argument to be as
background.

biomod2Format Logical. Creates a matrix of folds that can be directly used in the biomod2
package as a DataSplitTable for cross-validation.

x0ffset Numeric value between 0 and 1 for shifting the blocks horizontally. The value
is the proportion of block size.

yOffset Numeric value between 0 and 1 for shifting the blocks vertically. The value is
the proportion of block size.

seed Integer. A random seed generator for reproducibility.

progress Logical. If TRUE shows a progress bar when numLimit = NULL in random fold
selection.

verbose Logical. To print the report of the recods per fold.

Details

To keep the consistency, all the functions use metres as their unit. In this function, when the
input map has geographic coordinate system (decimal degrees), the block size is calculated based
on deviding theRange by 111325 (the standard distance of a degree in metres, on the Equator)
to change the unit to degree. This value is optional and can be changed by user via degMetre
argument.

The xOffset and yOffset can be used to change the spatial position of the blocks. It can also
be used to assess the sensitivity of analysis results to shifting in the blocking arrangements. These
options are available when theRange is defined. By default the region is located in the middle of
the blocks and by setting the offsets, the blocks will shift.

Roberts et. al. (2017) suggest that blocks should be substantially bigger than the range of spatial
autocorrelation (in model residual) to obtain realistic error estimates, while a buffer with the size
of the spatial autocorrelation range would result in a good estimation of error. This is because of

16

spatialBlock

the so-called edge effect (O’Sullivan & Unwin, 2014), whereby points located on the edges of the
blocks of opposite sets are not separated spatially. Blocking with a buffering strategy overcomes
this issue (see buffering).

Value

An object of class S3. A list of objects including:

folds - a list containing the folds. Each fold has two vectors with the training (first) and testing
(second) indices

foldID - a vector of values indicating the number of the fold for each observation (each number
corresponds to the same point in species data)

biomodTable - a matrix with the folds to be used in biomod2 package

k - number of the folds

blocks - SpatialPolygon of the blocks

range - the distance band of separating trainig and testing folds, if provided
species - the name of the species (column), if provided

plots - ggplot object

records - a table with the number of points in each category of training and testing

References

Bahn, V., & McGill, B. J. (2012). Testing the predictive performance of distribution models. Oikos,
122(3), 321-331.

O’Sullivan, D., Unwin, D.J., (2010). Geographic Information Analysis, 2nd ed. John Wiley &

Sons.

Roberts et al., (2017). Cross-validation strategies for data with temporal, spatial, hierarchical, or
phylogenetic structure. Ecography. 40: 913-929.

Wenger, S.J., Olden, J.D., (2012). Assessing transferability of ecological models: an underappreci-
ated aspect of statistical validation. Methods Ecol. Evol. 3, 260-267.

See Also

spatialAutoRange and rangeExplorer for selecting block size; buffering and envBlock for
alternative blocking strategies; foldExplorer for visualisation of the generated folds.

For DataSplitTable see BIOMOD_cv in biomod2 package

Examples

load package data
library(sf)

awt <- raster::brick(system.file("extdata”, "awt.grd”, package = "blockCV"))
import presence-absence species data
PA <- read.csv(system.file("extdata”, "PA.csv"”, package = "blockCV"))

spatialBlock 17

make a sf object from data.frame
pa_data <- sf::st_as_sf(PA, coords = c("x", "y"), crs = raster::crs(awt))

spatial blocking by specified range and random assignment
sb1 <- spatialBlock(speciesData = pa_data,

species = "Species”,
theRange = 70000,

k =5,

selection = "random”,

iteration = 100,

numLimit = NULL,

biomod2Format = TRUE,

xOffset = 0.3, # shift the blocks horizontally
yOffset = 0)

spatial blocking by row/column and systematic fold assignment
sb2 <- spatialBlock(speciesData = pa_data,

species = "Species”,
rasterLayer = awt,

rows = 5,

cols = 8,

k =5,

selection = "systematic”,

biomod2Format = TRUE)

Index

autofitVariogram, 12

BIOMOD_cv, 7, 16
blockCV, 2
buffering, 3,3,7, 8, 16

envBlock, 3,4, 5,8, 16
foldExplorer, 4, 7,8, 16
kmeans, 5
rangekExplorer, 9, 16

spatialAutoRange, 3, 4, I
spatialBlock, 3, 4,7, 8, 1

variogram, /12

0,11, 16
0,13

18

	blockCV
	buffering
	envBlock
	foldExplorer
	rangeExplorer
	spatialAutoRange
	spatialBlock
	Index

