Ever used an R function that produced a not-very-helpful error message, just to discover after minutes of debugging that you simply passed a wrong argument?
Blaming the laziness of the package author for not doing such standard checks (in a dynamically typed language such as R) is at least partially unfair, as R makes these types of checks cumbersome and annoying. Well, that’s how it was in the past.
Enter checkmate.
Virtually every standard type of user error when passing arguments into function can be caught with a simple, readable line which produces an informative error message in case. A substantial part of the package was written in C to minimize any worries about execution time overhead.
As a motivational example, consider you have a function to calculate
the faculty of a natural number and the user may choose between using
either the stirling approximation or R’s factorial
function
(which internally uses the gamma function). Thus, you have two
arguments, n
and method
. Argument
n
must obviously be a positive natural number and
method
must be either "stirling"
or
"factorial"
. Here is a version of all the hoops you need to
jump through to ensure that these simple requirements are met:
fact <- function(n, method = "stirling") {
if (length(n) != 1)
stop("Argument 'n' must have length 1")
if (!is.numeric(n))
stop("Argument 'n' must be numeric")
if (is.na(n))
stop("Argument 'n' may not be NA")
if (is.double(n)) {
if (is.nan(n))
stop("Argument 'n' may not be NaN")
if (is.infinite(n))
stop("Argument 'n' must be finite")
if (abs(n - round(n, 0)) > sqrt(.Machine$double.eps))
stop("Argument 'n' must be an integerish value")
n <- as.integer(n)
}
if (n < 0)
stop("Argument 'n' must be >= 0")
if (length(method) != 1)
stop("Argument 'method' must have length 1")
if (!is.character(method) || !method %in% c("stirling", "factorial"))
stop("Argument 'method' must be either 'stirling' or 'factorial'")
if (method == "factorial")
factorial(n)
else
sqrt(2 * pi * n) * (n / exp(1))^n
}
And for comparison, here is the same function using checkmate:
The functions can be split into four functional groups, indicated by their prefix.
If prefixed with assert
, an error is thrown if the
corresponding check fails. Otherwise, the checked object is returned
invisibly. There are many different coding styles out there in the wild,
but most R programmers stick to either camelBack
or
underscore_case
. Therefore, checkmate
offers
all functions in both flavors: assert_count
is just an
alias for assertCount
but allows you to retain your
favorite style.
The family of functions prefixed with test
always return
the check result as logical value. Again, you can use
test_count
and testCount
interchangeably.
Functions starting with check
return the error message
as a string (or TRUE
otherwise) and can be used if you need
more control and, e.g., want to grep on the returned error message.
expect
is the last family of functions and is intended
to be used with the testthat package.
All performed checks are logged into the testthat
reporter.
Because testthat
uses the underscore_case
, the
extension functions only come in the underscore style.
All functions are categorized into objects to check on the package help page.
You can use assert to perform multiple checks at once and throw an assertion if all checks fail.
Here is an example where we check that x is either of class
foo
or class bar
:
Note that assert(, combine = "or")
and
assert(, combine = "and")
allow to control the logical
combination of the specified checks, and that the former is the
default.
The following functions allow a special syntax to define argument
checks using a special format specification. E.g.,
qassert(x, "I+")
asserts that x
is an integer
vector with at least one element and no missing values. This very simple
domain specific language covers a large variety of frequent argument
checks with only a few keystrokes. You choose what you like best.
To extend testthat, you
need to IMPORT, DEPEND or SUGGEST on the checkmate
package.
Here is a minimal example:
# file: tests/test-all.R
library(testthat)
library(checkmate) # for testthat extensions
test_check("mypkg")
Now you are all set and can use more than 30 new expectations in your tests.
In comparison with tediously writing the checks yourself in R (c.f.
factorial example at the beginning of the vignette), R is sometimes a
tad faster while performing checks on scalars. This seems odd at first,
because checkmate is mostly written in C and should be comparably fast.
Yet many of the functions in the base
package are not
regular functions, but primitives. While primitives jump directly into
the C code, checkmate has to use the considerably slower
.Call
interface. As a result, it is possible to write (very
simple) checks using only the base functions which, under some
circumstances, slightly outperform checkmate. However, if you go one
step further and wrap the custom check into a function to convenient
re-use it, the performance gain is often lost (see benchmark 1).
For larger objects the tide has turned because checkmate avoids many
unnecessary intermediate variables. Also note that the quick/lazy
implementation in
qassert
/qtest
/qexpect
is often a
tad faster because only two arguments have to be evaluated (the object
and the rule) to determine the set of checks to perform.
Below you find some (probably unrepresentative) benchmark. But also
note that this one here has been executed from inside knitr
which is often the cause for outliers in the measured execution time.
Better run the benchmark yourself to get unbiased results.
x
is a flaglibrary(checkmate)
library(ggplot2)
library(microbenchmark)
x = TRUE
r = function(x, na.ok = FALSE) { stopifnot(is.logical(x), length(x) == 1, na.ok || !is.na(x)) }
cm = function(x) assertFlag(x)
cmq = function(x) qassert(x, "B1")
mb = microbenchmark(r(x), cm(x), cmq(x))
## Warning in microbenchmark(r(x), cm(x), cmq(x)): less accurate nanosecond times
## to avoid potential integer overflows
## Unit: nanoseconds
## expr min lq mean median uq max neval
## r(x) 1640 1722 11797.34 1804 1927 990314 100
## cm(x) 1107 1189 5067.19 1230 1353 320497 100
## cmq(x) 656 779 6072.51 779 861 467236 100
## Coordinate system already present. Adding new coordinate system, which will
## replace the existing one.
x
is a numeric of length 1000
with no missing nor NaN valuesx = runif(1000)
r = function(x) stopifnot(is.numeric(x), length(x) == 1000, all(!is.na(x) & x >= 0 & x <= 1))
cm = function(x) assertNumeric(x, len = 1000, any.missing = FALSE, lower = 0, upper = 1)
cmq = function(x) qassert(x, "N1000[0,1]")
mb = microbenchmark(r(x), cm(x), cmq(x))
print(mb)
## Unit: microseconds
## expr min lq mean median uq max neval
## r(x) 9.389 10.004 24.24781 10.209 10.373 1408.760 100
## cm(x) 3.444 3.526 9.03107 3.649 3.813 475.108 100
## cmq(x) 2.952 2.993 6.34762 3.075 3.116 324.761 100
## Coordinate system already present. Adding new coordinate system, which will
## replace the existing one.
x
is a character vector with
no missing values nor empty stringsx = sample(letters, 10000, replace = TRUE)
r = function(x) stopifnot(is.character(x), !any(is.na(x)), all(nchar(x) > 0))
cm = function(x) assertCharacter(x, any.missing = FALSE, min.chars = 1)
cmq = function(x) qassert(x, "S+[1,]")
mb = microbenchmark(r(x), cm(x), cmq(x))
print(mb)
## Unit: microseconds
## expr min lq mean median uq max neval
## r(x) 138.457 148.1535 161.81347 150.1625 151.6795 1332.582 100
## cm(x) 124.025 124.3120 129.90522 124.5170 124.7015 452.271 100
## cmq(x) 58.712 58.8350 62.41635 58.9580 59.1220 380.357 100
## Coordinate system already present. Adding new coordinate system, which will
## replace the existing one.
x
is a data frame with no
missing valuesN = 10000
x = data.frame(a = runif(N), b = sample(letters[1:5], N, replace = TRUE), c = sample(c(FALSE, TRUE), N, replace = TRUE))
r = function(x) is.data.frame(x) && !any(sapply(x, function(x) any(is.na(x))))
cm = function(x) testDataFrame(x, any.missing = FALSE)
cmq = function(x) qtest(x, "D")
mb = microbenchmark(r(x), cm(x), cmq(x))
print(mb)
## Unit: microseconds
## expr min lq mean median uq max neval
## r(x) 57.277 62.771 75.28297 63.9805 65.8870 1199.496 100
## cm(x) 22.837 23.206 28.02350 23.3290 23.7185 345.589 100
## cmq(x) 18.819 18.983 23.58238 19.0240 19.0650 440.996 100
## Coordinate system already present. Adding new coordinate system, which will
## replace the existing one.
# checkmate tries to stop as early as possible
x$a[1] = NA
mb = microbenchmark(r(x), cm(x), cmq(x))
print(mb)
## Unit: nanoseconds
## expr min lq mean median uq max neval
## r(x) 46822 52049.5 51561.60 52316 52541.5 65477 100
## cm(x) 2993 3198.0 3427.60 3321 3444.0 13653 100
## cmq(x) 451 492.0 584.66 533 615.0 3690 100
## Coordinate system already present. Adding new coordinate system, which will
## replace the existing one.
x
is an increasing sequence of
integers with no missing valuesN = 10000
x.altrep = seq_len(N) # this is an ALTREP in R version >= 3.5.0
x.sexp = c(x.altrep) # this is a regular SEXP OTOH
r = function(x) stopifnot(is.integer(x), !any(is.na(x)), !is.unsorted(x))
cm = function(x) assertInteger(x, any.missing = FALSE, sorted = TRUE)
mb = microbenchmark(r(x.sexp), cm(x.sexp), r(x.altrep), cm(x.altrep))
print(mb)
## Unit: microseconds
## expr min lq mean median uq max neval
## r(x.sexp) 25.092 25.2765 36.17061 26.8960 27.2445 978.096 100
## cm(x.sexp) 10.988 11.1930 11.97323 11.3160 11.4390 74.620 100
## r(x.altrep) 27.757 27.9825 29.24571 29.6225 30.0120 32.595 100
## cm(x.altrep) 1.804 1.9270 6.56738 2.0500 2.2140 449.032 100
## Coordinate system already present. Adding new coordinate system, which will
## replace the existing one.
To extend checkmate a custom check*
function has to be
written. For example, to check for a square matrix one can re-use parts
of checkmate and extend the check with additional functionality:
checkSquareMatrix = function(x, mode = NULL) {
# check functions must return TRUE on success
# and a custom error message otherwise
res = checkMatrix(x, mode = mode)
if (!isTRUE(res))
return(res)
if (nrow(x) != ncol(x))
return("Must be square")
return(TRUE)
}
# a quick test:
X = matrix(1:9, nrow = 3)
checkSquareMatrix(X)
## [1] TRUE
## [1] "Must store characters"
## [1] "Must be square"
The respective counterparts to the check
-function can be
created using the constructors makeAssertionFunction,
makeTestFunction
and makeExpectationFunction:
# For assertions:
assert_square_matrix = assertSquareMatrix = makeAssertionFunction(checkSquareMatrix)
print(assertSquareMatrix)
## function (x, mode = NULL, .var.name = checkmate::vname(x), add = NULL)
## {
## if (missing(x))
## stop(sprintf("argument \"%s\" is missing, with no default",
## .var.name))
## res = checkSquareMatrix(x, mode)
## checkmate::makeAssertion(x, res, .var.name, add)
## }
# For tests:
test_square_matrix = testSquareMatrix = makeTestFunction(checkSquareMatrix)
print(testSquareMatrix)
## function (x, mode = NULL)
## {
## isTRUE(checkSquareMatrix(x, mode))
## }
# For expectations:
expect_square_matrix = makeExpectationFunction(checkSquareMatrix)
print(expect_square_matrix)
## function (x, mode = NULL, info = NULL, label = vname(x))
## {
## if (missing(x))
## stop(sprintf("Argument '%s' is missing", label))
## res = checkSquareMatrix(x, mode)
## makeExpectation(x, res, info, label)
## }
Note that all the additional arguments .var.name
,
add
, info
and label
are
automatically joined with the function arguments of your custom check
function. Also note that if you define these functions inside an R
package, the constructors are called at build-time (thus, there is no
negative impact on the runtime).
The package registers two functions which can be used in other packages’ C/C++ code for argument checks.
These are the counterparts to qassert and qtest. Due to their simplistic interface, they perfectly suit the requirements of most type checks in C/C++.
For detailed background information on the register mechanism, see the Exporting C Code section in Hadley’s Book “R Packages” or WRE. Here is a step-by-step guide to get you started:
checkmate
to your “Imports” and “LinkingTo”
sections in your DESCRIPTION file."checkmate_stub.c"
, see
below.<checkmate.h>
in
each compilation unit where you want to use checkmate.File contents for (2):
For the sake of completeness, here the sessionInfo()
for
the benchmark (but remember the note before on knitr
possibly biasing the results).
## R version 4.3.0 (2023-04-21)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Ventura 13.3.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: Europe/Berlin
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] microbenchmark_1.4.9 ggplot2_3.4.2 checkmate_2.2.0
##
## loaded via a namespace (and not attached):
## [1] vctrs_0.6.2 cli_3.6.1 knitr_1.42 rlang_1.1.0
## [5] xfun_0.39 highr_0.10 jsonlite_1.8.4 glue_1.6.2
## [9] colorspace_2.1-0 backports_1.4.1 htmltools_0.5.5 sass_0.4.5
## [13] fansi_1.0.4 scales_1.2.1 rmarkdown_2.21 grid_4.3.0
## [17] tibble_3.2.1 evaluate_0.20 munsell_0.5.0 jquerylib_0.1.4
## [21] fastmap_1.1.1 yaml_2.3.7 lifecycle_1.0.3 compiler_4.3.0
## [25] pkgconfig_2.0.3 farver_2.1.1 digest_0.6.31 R6_2.5.1
## [29] utf8_1.2.3 pillar_1.9.0 magrittr_2.0.3 bslib_0.4.2
## [33] withr_2.5.0 tools_4.3.0 gtable_0.3.3 cachem_1.0.7