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bsnullinteract Compute bootstrapped null interaction prediction rule ensembles

Description

bsnullinteract generates bootstrapped null interaction models, which can be used to derive a
reference distribution of the test statistic calculated with interact.

Usage

bsnullinteract(
object,
nsamp = 10,
parallel = FALSE,
penalty.par.val = "lambda.1se",
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verbose = FALSE
)

Arguments

object object of class pre.

nsamp numeric. Number of bootstrapped null interaction models to be derived.

parallel logical. Should parallel foreach be used to generate initial ensemble? Must
register parallel beforehand, such as doMC or others.

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

verbose logical. should progress be printed to the command line?

Details

Note that computation of bootstrapped null interaction models is computationally intensive. The
default number of samples is set to 10, but for reliable results argument nsamp should be set to a
higher value (e.g., ≥ 100).

See also section 8.3 of Friedman & Popescu (2008).

Value

A list of length nsamp with null interaction models, to be used as input for interact.

References

Fokkema, M. (2020). Fitting prediction rule ensembles with R package pre. Journal of Statistical
Software, 92(12), 1-30. doi: 10.18637/jss.v092.i12

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954, doi: 10.1214/07AOAS148.

See Also

pre, interact

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data=airquality[complete.cases(airquality),])
nullmods <- bsnullinteract(airq.ens)
interact(airq.ens, nullmods = nullmods, col = c("#7FBFF5", "#8CC876"))

https://doi.org/10.18637/jss.v092.i12
https://doi.org/10.1214/07-AOAS148
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caret_pre_model Model set up for train function of package caret

Description

caret_pre_model provides a model setup for function train of package caret. It allows for tuning
arguments sampfrac, maxdepth, learnrate, mtry, use.grad and penalty.par.val.

Usage

caret_pre_model

Format

An object of class list of length 17.

Details

When tuning parameters of pre() with caret’s train() function, always use the default S3 method
(i.e., specify predictors and response variables through arguments x and y). When train.formula(),
is used (i.e., if formula and data arguments are specified), train will internally call model.matrix()
on data, which will code all categorical (factor) predictor variables as dummy variables, which will
yield a different result than inputting the original factors, for most tree-based methods.

caret_pre__model$parameters provides an overview of the parameters that can be tuned for
function pre using caret. caret_pre_model$grid provides a function for creating a tuning grid
(see Examples below).

Examples

## Not run:

library("caret")

## Prepare data:
airq <- airquality[complete.cases(airquality),]
y <- airq$Ozone
x <- airq[,-1]

## Apply caret with only pre's default settings (trControl and ntrees argument
## are employed here only to reduce computation time):

set.seed(42)
prefit1 <- train(x = x, y = y, method = caret_pre_model,

trControl = trainControl(number = 1),
ntrees = 25L)

prefit1

## Create custom tuneGrid:
set.seed(42)
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tuneGrid <- caret_pre_model$grid(x = x, y = y,
maxdepth = 3L:5L,
learnrate = c(.01, .1),
penalty.par.val = c("lambda.1se", "lambda.min"))

tuneGrid
## Apply caret (again, ntrees and trControl set only to reduce computation time):
prefit2 <- train(x = x, y = y, method = caret_pre_model,

trControl = trainControl(number = 1),
tuneGrid = tuneGrid, ntrees = 25L)

prefit2

## Get best tuning parameter values:
prefit2$bestTune
## Get predictions from model with best tuning parameters:
predict(prefit2, newdata = x[1:10, ])
plot(prefit2)

## Obtain tuning grid through random search over the tuning parameter space:
set.seed(42)
tuneGrid2 <- caret_pre_model$grid(x = x, y = y, search = "random", len = 10)
tuneGrid2
set.seed(42)
prefit3 <- train(x = x, y = y, method = caret_pre_model,

trControl = trainControl(number = 1, verboseIter = TRUE),
tuneGrid = tuneGrid2, ntrees = 25L)

prefit3

## Count response:
set.seed(42)
prefit4 <- train(x = x, y = y, method = caret_pre_model,

trControl = trainControl(number = 1),
ntrees = 25L, family = "poisson")

prefit4

## Binary factor response:
y_bin <- factor(airq$Ozone > mean(airq$Ozone))
set.seed(42)
prefit5 <- train(x = x, y = y_bin, method = caret_pre_model,

trControl = trainControl(number = 1),
ntrees = 25L, family = "binomial")

prefit5

## Factor response with > 2 levels:
x_multin <- airq[,-5]
y_multin <- factor(airq$Month)
set.seed(42)
prefit6 <- train(x = x_multin, y = y_multin, method = caret_pre_model,

trControl = trainControl(number = 1),
ntrees = 25L, family = "multinomial")

prefit6

## End(Not run)
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carrillo Data on personality characteristics and depressive symptom severity

Description

Dataset from a study by Carrillo et al. (2001), who assessed the extent to which the subscales of the
NEO Personality Inventory (NEO-PI; Costa and McCrae 1985) could predict depressive symptoma-
tology, as measured by the Beck Depression Inventory (BDI; Beck, Steer, and Carbin 1988). The
NEO-PI assesses five major personality dimensions (Neuroticism, Extraversion, Openness to Ex-
perience, Agreeableness and Conscientiousness). Each of these dimensions consist of six specific
subtraits (facets). The NEO-PI and BDI were administered to 112 Spanish respondents. Respon-
dents’ age in years and sex were also recorded and included in the dataset.

Usage

data(carrillo)

Format

A data frame with 112 observations and 26 variables

Details

• neuroticism facet and total scores: n1, n2, n3, n4, n5, n6, ntot
• extraversion facet and total scores: e1, e2, e3, e4, e5, e6, etot
• openness to experience facet and total scores: open1, open2, open3, open4, open5, open6,

opentot
• altruism total score: altot
• conscientiousness total score: contot
• depression symptom severity: bdi
• sex: sexo
• age in years: edad

References

Beck, A.T., Steer, R.A. & Carbin, M.G. (1988). Psychometric properties of the Beck Depression
Inventory: Twenty-five years of evaluation. Clinical Psychology Review, 8(1), 77-100.
Carrillo, J. M., Rojo, N., Sanchez-Bernardos, M. L., & Avia, M. D. (2001). Openness to experience
and depression. European Journal of Psychological Assessment, 17(2), 130.
Costa, P.T. & McCrae, R.R. (1985). The NEO Personality Inventory. Psychological Assessment
Resources, Odessa, FL.

Examples

data("carrillo")
summary(carrillo)
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coef.gpe Coefficients for a General Prediction Ensemble (gpe)

Description

coef function for gpe

Usage

## S3 method for class 'gpe'
coef(object, penalty.par.val = "lambda.1se", ...)

Arguments

object object of class pre

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

... additional arguments to be passed to coef.cv.glmnet.

See Also

coef.pre, gpe

coef.pre Coefficients for the final prediction rule ensemble

Description

coef.pre returns coefficients for prediction rules and linear terms in the final ensemble

Usage

## S3 method for class 'pre'
coef(object, penalty.par.val = "lambda.1se", ...)
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Arguments

object object of class pre

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

... additional arguments to be passed to coef.cv.glmnet.

Details

In some cases, duplicated variable names may appear in the model. For example, the first variable
is a factor named ’V1’ and there are also variables named ’V10’ and/or ’V11’ and/or ’V12’ (etc).
Then for for the binary factor V1, dummy contrast variables will be created, named ’V10’, ’V11’,
’V12’ (etc). As should be clear from this example, this yields duplicated variable names, which
may yield problems, for example in the calculation of predictions and importances, later on. This
can be prevented by renaming factor variables with numbers in their name, prior to analysis.

Value

returns a dataframe with 3 columns: coefficient, rule (rule or variable name) and description (NA for
linear terms, conditions for rules).

See Also

pre, plot.pre, cvpre, importance, predict.pre, interact, print.pre

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
coefs <- coef(airq.ens)

corplot Plot correlations between baselearners in a prediction rule ensemble
(pre)

Description

corplot plots correlations between baselearners in a prediction rule ensemble
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Usage

corplot(
object,
penalty.par.val = "lambda.1se",
colors = NULL,
fig.plot = c(0, 0.85, 0, 1),
fig.legend = c(0.8, 0.95, 0, 1),
legend.breaks = seq(-1, 1, by = 0.1)

)

Arguments

object object of class pre

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

colors vector of contiguous colors to be used for plotting. If colors = NULL (default),
colorRampPalette is used to generate a sequence of 200 colors going from red
to white to blue. A different set of plotting colors can be specified here, for ex-
ample: cm.colors(100), colorspace::rainbow_hcl)(100) or colorRampPalette(c("red","yellow","green"))(100).

fig.plot plotting region to be used for correlation plot. See fig under par.

fig.legend plotting region to be used for legend. See fig under par.

legend.breaks numeric vector of breakpoints to be depicted in the plot’s legend. Should be a
sequence from -1 to 1.

See Also

See rainbow_hcl and colorRampPalette.

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
corplot(airq.ens)
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cvpre Full k-fold cross validation of a prediction rule ensemble (pre)

Description

cvpre performs k-fold cross validation on the dataset used to create the specified prediction rule
ensemble, providing an estimate of predictive accuracy on future observations.

Usage

cvpre(
object,
k = 10,
penalty.par.val = "lambda.1se",
pclass = 0.5,
foldids = NULL,
verbose = FALSE,
parallel = FALSE,
print = TRUE

)

Arguments

object An object of class pre.

k integer. The number of cross validation folds to be used.
penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

pclass numeric. Only used for binary classification. Cut-off value for the predicted
probabilities that should be used to classify observations to the second class.

foldids numeric vector of length(nrow(object$data)) (the number of observations
in the training data used to fit the original ensemble). Defaults to NULL, resulting
in the original training observations being randomly assigned to one of the k
folds. Depending on sample size, the number of factors in the data, the num-
ber of factor levels and their distributions, the default may yield errors. See
’Details’.

verbose logical. Should progress of the cross validation be printed to the command line?

parallel logical. Should parallel foreach be used? Must register parallel beforehand,
such as doMC or others.

print logical. Should accuracy estimates be printed to the command line?
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Details

The random sampling employed by default may yield folds including all observations with a given
level of a given factor. This results in an error, as it requires predictions for factor levels to be
computed that were not observed in the training data, which is impossible. By manually specifying
the foldids argument, users can make sure all class levels are represented in each of the k training
partitions.

Value

Calculates cross-validated estimates of predictive accuracy and prints these to the command line.
For survival regression, accuracy is not calculated, as there is currently no agreed-upon way to best
quantify accuracy in survival regression models. Users can compute their own accuracy estimates
using the (invisibly returned) cross-validated predictions ($cvpreds). Invisibly, a list of three ob-
jects is returned: accuracy (containing accuracy estimates), cvpreds (containing cross-validated
predictions) and fold_indicators (a vector indicating the cross validation fold each observation
was part of). For (multivariate) continuous outcomes, accuracy is a list with elements $MSE (mean
squared error on test observations) and $MAE (mean absolute error on test observations). For (bi-
nary and multiclass) classification, accuracy is a list with elements $SEL (mean squared error on
predicted probabilities), $AEL (mean absolute error on predicted probabilities), $MCR (average mis-
classification error rate) and $table (proportion table with (mis)classification rates).

See Also

pre, plot.pre, coef.pre, importance, predict.pre, interact, print.pre

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
airq.cv <- cvpre(airq.ens)

explain Explain predictions from final prediction rule ensemble

Description

explain shows which rules apply to which observations and visualizes the contribution of rules
and linear predictors to the predicted values

Usage

explain(
object,
newdata,
penalty.par.val = "lambda.1se",
response = 1L,
plot = TRUE,
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intercept = FALSE,
center.linear = FALSE,
plot.max.nobs = 4,
plot.dim = c(2, 2),
plot.obs.names = TRUE,
pred.type = "response",
digits = 3L,
cex = 0.8,
ylab = "Contribution to linear predictor",
bar.col = c("#E495A5", "#39BEB1"),
rule.col = "darkgrey"

)

Arguments

object object of class pre.

newdata optional dataframe of new (test) observations, including all predictor variables
used for deriving the prediction rule ensemble.

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

response numeric or character vector of length one. Specifies the name or number of the
response variable (for multivariate responses) or the name or number of the fac-
tor level (for multinomial responses) for which explanations and contributions
should be computed and/or plotted. Only used forpres fitted to multivariate or
multinomial responses.

plot logical. Should explanations be plotted?

intercept logical. Specifies whether intercept should be included in explaining predic-
tions.

center.linear logical. Specifies whether linear terms should be centered with respect to the
training sample mean before computing their contribution to the predicted value.
If intercept = TRUE, this will also affect the intercept. That is, the value of
the intercept returned will differ from that of the value returned by the print
method.

plot.max.nobs numeric. Specifies maximum number of observations for which explanations
will be plotted. The default (4) plots the explanation for the first four observa-
tions supplied in newdata.

plot.dim numeric vector of length 2. Specifies the number of rows and columns in the
resulting plot.

plot.obs.names logical vector of length 1, NULL, or character vector of length nrow(data) sup-
plying the names that should be used for individual observations’ plots. If TRUE



explain 13

(default), rownames(newdata) will be used as titles. If NULL, paste("Observation",1:nrow(newdata))
will be used as titles. If FALSE, no titles will be plotted.

pred.type character. Specifies the type of predicted values to be computed, returned and
provided in the plot(s). Note that the computed contributions must be additive
and are therefore always on the scale of the linear predictor.

digits integer. Specifies the number of digits used in depcting the predicted values in
the plot.

cex numeric. Specifies the relative text size of title, tick and axis labels.

ylab character. Specifies the label for the horizonantal (y-) axis.

bar.col character vector of length two. Specifies the colors to be used for plotting the
positive and negative contributions to the predictions, respectively.

rule.col character. Specifies the color to be used for plotting the rule descriptions. If
NULL, rule descriptions are not plotted.

Details

Provides a graphical depiction of the contribution of rules and linear terms to the individual predic-
tions (if plot = TRUE. Invisibly returns a list with objects predictors and contribution. predictors
contains the values of the rules and linear terms for each observation in newdata, for those rules
and linear terms included in the final ensemble with the specified value of penalty.par.val.
contribution contains the values of predictors, multiplied by the estimated values of the co-
efficients in the final ensemble selected with the specified value of penalty.par.val. All contri-
butions are calculated w.r.t. the intercept, by default. Thus, if a given rule applies to an observation
in newdata, the contribution of that rule equals the estimated coefficient of that rule. If a given
rule does not apply to an observation in newdata, the contribution of that rule equals 0. For linear
terms, contributions can be centered, or not (the default). Thus, by default the contribution of a
linear terms for an observation in newdata equals the obeservation’s value of the linear term, times
the estimated coefficient of the linear term. If center.linear = TRUE, the contribution of a linear
term for an observation in newdata equals (the value of the linear temr, minus the mean value of
the linear term in the training data) times the estimated coefficient for the linear term.

References

Fokkema, M. & Strobl, C. (2020). Fitting prediction rule ensembles to psychological research data:
An introduction and tutorial. Psychological Methods 25(5), 636-652. doi: 10.1037/met0000256,
https://arxiv.org/abs/1907.05302

See Also

pre, plot.pre, coef.pre, importance, cvpre, interact, print.pre

Examples

airq <- airquality[complete.cases(airquality), ]
set.seed(1)
train <- sample(1:nrow(airq), size = 100)
set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airq[train,])

https://doi.org/10.1037/met0000256
https://arxiv.org/abs/1907.05302
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airq.ens.exp <- explain(airq.ens, newdata = airq[-train,])
airq.ens.exp$predictors
airq.ens.exp$contribution

## Can also include intercept in explanation:
airq.ens.exp <- explain(airq.ens, newdata = airq[-train,])

## Fit PRE with linear terms only to illustrate effect of center.linear:
set.seed(42)
airq.ens2 <- pre(Ozone ~ ., data = airq[train,], type = "linear")
## When not centered around their means, Month has negative and
## Day has positive contribution:
explain(airq.ens2, newdata = airq[-train,][1:2,],

penalty.par.val = "lambda.min")$contribution
## After mean centering, contributions of Month and Day have switched
## sign (for these two observations):
explain(airq.ens2, newdata = airq[-train,][1:2,],

penalty.par.val = "lambda.min", center.linear = TRUE)$contribution

gpe Derive a General Prediction Ensemble (gpe)

Description

Provides an interface for deriving sparse prediction ensembles where basis functions are selected
through L1 penalization.

Usage

gpe(
formula,
data,
base_learners = list(gpe_trees(), gpe_linear()),
weights = rep(1, times = nrow(data)),
sample_func = gpe_sample(),
verbose = FALSE,
penalized_trainer = gpe_cv.glmnet(),
model = TRUE

)

Arguments

formula Symbolic description of the model to be fit of the form y ~ x1 + x2 + ...+ xn.
If the output variable (left-hand side of the formula) is a factor, an ensemble
for binary classification is created. Otherwise, an ensemble for prediction of a
continuous variable is created.

data data.frame containing the variables in the model.
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base_learners List of functions which has formal arguments formula, data, weights, sample_func,
verbose, and family and returns a vector of characters with terms for the final
formula passed to cv.glmnet. See gpe_linear, gpe_trees, and gpe_earth.

weights Case weights with length equal to number of rows in data.

sample_func Function used to sample when learning with base learners. The function should
have formal argument n and weights and return a vector of indices. See gpe_sample.

verbose TRUE if comments should be posted throughout the computations.
penalized_trainer

Function with formal arguments x, y, weights, family which returns a fit ob-
ject. This can be changed to test other "penalized trainers" (like other function
that perform an L1 penalty or L2 penalty and elastic net penalty). Not using
cv.glmnet may cause other function for gpe objects to fail. See gpe_cv.glmnet.

model TRUE if the data should added to the returned object.

Details

Provides a more general framework for making a sparse prediction ensemble than pre.

By default, a similar fit to pre is obtained. In addition, multivariate adaptive regression splines
(Friedman, 1991) can be included with gpe_earth. See examples.

Other customs base learners can be implemented. See gpe_trees, gpe_linear or gpe_earth for
details of the setup. The sampling function given by sample_func can also be replaced by a custom
sampling function. See gpe_sample for details of the setup.

Value

An object of class gpe.

References

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954. Friedman, J. H. (1991). Multivariate adaptive regression splines.
The Annals of Statistics, 19(1), 1-67.

See Also

pre, gpe_trees, gpe_linear, gpe_earth, gpe_sample, gpe_cv.glmnet

Examples

## Not run:
## Obtain similar fit to \code{\link{pre}}:
gpe.rules <- gpe(Ozone ~ ., data = airquality[complete.cases(airquality),],

base_learners = list(gpe_linear(), gpe_trees()))
gpe.rules

## Also include products of hinge functions using MARS:
gpe.hinge <- gpe(Ozone ~ ., data = airquality[complete.cases(airquality),],

base_learners = list(gpe_linear(), gpe_trees(), gpe_earth()))
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## End(Not run)

gpe_cv.glmnet Default penalized trainer for gpe

Description

Default "penalizer function" generator gpe which uses cv.glmnet.

Usage

gpe_cv.glmnet(...)

Arguments

... arguments to cv.glmnet. x, y, weights and family will not be used.

Value

Returns a function with formal arguments x,y,weights,family and returns a fit object.

See Also

gpe

gpe_rules_pre Get rule learner for gpe which mimics behavior of pre

Description

gpe_rules_pre generates a learner which generates rules like pre, which can be supplied to the
gpe base_learner argument.

Usage

gpe_rules_pre(
learnrate = 0.01,
par.init = FALSE,
mtry = Inf,
maxdepth = 3L,
ntrees = 500,
tree.control = ctree_control(),
use.grad = TRUE,
removeduplicates = TRUE,
removecomplements = TRUE,
tree.unbiased = TRUE

)
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Arguments

learnrate numeric value > 0. Learning rate or boosting parameter.

par.init logical. Should parallel foreach be used to generate initial ensemble? Only
used when learnrate == 0. Note: Must register parallel beforehand, such as
doMC or others. Furthermore, setting par.init = TRUE will likely only increase
computation time for smaller datasets.

mtry positive integer. Number of randomly selected predictor variables for creating
each split in each tree. Ignored when tree.unbiased=FALSE.

maxdepth positive integer. Maximum number of conditions in rules. If length(maxdepth)
== 1, it specifies the maximum depth of of each tree grown. If length(maxdepth)
== ntrees, it specifies the maximum depth of every consecutive tree grown. Al-
ternatively, a random sampling function may be supplied, which takes argument
ntrees and returns integer values. See also maxdepth_sampler.

ntrees positive integer value. Number of trees to generate for the initial ensemble.

tree.control list with control parameters to be passed to the tree fitting function, generated us-
ing ctree_control, mob_control (if use.grad = FALSE), or rpart.control
(if tree.unbiased = FALSE).

use.grad logical. Should gradient boosting with regression trees be employed when learnrate
> 0? If TRUE, use trees fitted by ctree or rpart as in Friedman (2001), but with-
out the line search. If use.grad = FALSE, glmtree instead of ctree will be em-
ployed for rule induction, yielding longer computation times, higher complexity,
but possibly higher predictive accuracy. See Details for supported combinations
of family, use.grad and learnrate.

removeduplicates

logical. Remove rules from the ensemble which are identical to an earlier rule?
removecomplements

logical. Remove rules from the ensemble which are identical to (1 - an earlier
rule)?

tree.unbiased logical. Should an unbiased tree generation algorithm be employed for rule gen-
eration? Defaults to TRUE, if set to FALSE, rules will be generated employing the
CART algorithm (which suffers from biased variable selection) as implemented
in rpart. See details below for possible combinations with family, use.grad
and learnrate.

Examples

## Obtain same fits with pre and gpe
set.seed(42)
gpe.mod <- gpe(Ozone ~ ., data = airquality[complete.cases(airquality),],

base_learners = list(gpe_rules_pre(), gpe_linear()))
gpe.mod
set.seed(42)
pre.mod <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),],)
pre.mod
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gpe_sample Sampling Function Generator for gpe

Description

Provides a sample function for gpe.

Usage

gpe_sample(sampfrac = 0.5)

Arguments

sampfrac Fraction of n to use for sampling. It is the η/N in Friedman & Popescu (2008).

Value

Returns a function that takes an n argument for the number of observations and a weights argument
for the case weights. The function returns a vector of indices.

References

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954.

See Also

gpe

gpe_trees Learner Functions Generators for gpe

Description

Functions to get "learner" functions for gpe.

Usage

gpe_trees(
...,
remove_duplicates_complements = TRUE,
mtry = Inf,
ntrees = 500,
maxdepth = 3L,
learnrate = 0.01,
parallel = FALSE,
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use_grad = TRUE,
tree.control = ctree_control(mtry = mtry, maxdepth = maxdepth)

)

gpe_linear(..., winsfrac = 0.025, normalize = TRUE)

gpe_earth(
...,
degree = 3,
nk = 8,
normalize = TRUE,
ntrain = 100,
learnrate = 0.1,
cor_thresh = 0.99

)

Arguments

... Currently not used.
remove_duplicates_complements

TRUE. Should rules with complementary or duplicate support be removed?

mtry Number of input variables randomly sampled as candidates at each node for
random forest like algorithms. The argument is passed to the tree methods in
the partykit package.

ntrees Number of trees to fit. Will not have an effect if tree.control is used.

maxdepth Maximum depth of trees. Will not have an effect if tree.control is used.

learnrate Learning rate for methods. Corresponds to the ν parameter in Friedman &
Popescu (2008).

parallel TRUE. Should basis functions be found in parallel?

use_grad TRUE. Should binary outcomes use gradient boosting with regression trees when
learnrate > 0? That is, use ctree instead of glmtree as in Friedman (2001)
with a second order Taylor expansion instead of first order as in Chen and
Guestrin (2016).

tree.control ctree_control with options for the ctree function.

winsfrac Quantile to winsorize linear terms. The value should be in [0, 0.5)

normalize TRUE. Should value be scaled by .4 times the inverse standard deviation? If TRUE,
gives linear terms the same influence as a typical rule.

degree Maximum degree of interactions in earth model.

nk Maximum number of basis functions in earth model.

ntrain Number of models to fit.

cor_thresh A threshold on the pairwise correlation for removal of basis functions. This is
similar to remove_duplicates_complements. One of the basis functions in
pairs where the correlation exceeds the threshold is excluded. NULL implies no
exclusion. Setting a value closer to zero will decrease the time needed to fit the
final model.
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Details

gpe_trees provides learners for tree method. Either ctree or glmtree from the partykit package
will be used.

gpe_linear provides linear terms for the gpe.

gpe_earth provides basis functions where each factor is a hinge function. The model is estimated
with earth.

Value

A function that has formal arguments formula, data, weights, sample_func, verbose, family,
.... The function returns a vector with character where each element is a term for the final formula
in the call to cv.glmnet

References

Hothorn, T., & Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R.
Journal of Machine Learning Research, 16, 3905-3909.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals Statistics, 19(1), 1-67.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals
of Applied Statistics, 29(5), 1189-1232.

Friedman, J. H. (1993). Fast MARS. Dept. of Statistics Technical Report No. 110, Stanford
University.

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954.

Chen T., & Guestrin C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.

See Also

gpe, rTerm, lTerm, eTerm

importance Calculate importances of baselearners and input variables in a pre-
diction rule ensemble (pre)

Description

importance calculates importances for rules, linear terms and input variables in the prediction rule
ensemble (pre), and creates a bar plot of variable importances.
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Usage

importance(
object,
standardize = FALSE,
global = TRUE,
quantprobs = c(0.75, 1),
penalty.par.val = "lambda.1se",
round = NA,
plot = TRUE,
ylab = "Importance",
main = "Variable importances",
abbreviate = 10L,
diag.xlab = TRUE,
diag.xlab.hor = 0,
diag.xlab.vert = 2,
cex.axis = 1,
legend = "topright",
...

)

Arguments

object an object of class pre

standardize logical. Should baselearner importances be standardized with respect to the
outcome variable? If TRUE, baselearner importances have a minimum of 0 and
a maximum of 1. Only used for ensembles with numeric (non-count) response
variables.

global logical. Should global importances be calculated? If FALSE, local importances
will be calculated, given the quantiles of the predictions F(x) in quantprobs.

quantprobs optional numeric vector of length two. Only used when global = FALSE. Prob-
abilities for calculating sample quantiles of the range of F(X), over which local
importances are calculated. The default provides variable importances calcu-
lated over the 25% highest values of F(X).

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

round integer. Number of decimal places to round numeric results to. If NA (default),
no rounding is performed.

plot logical. Should variable importances be plotted?

ylab character string. Plotting label for y-axis. Only used when plot = TRUE.

main character string. Main title of the plot. Only used when plot = TRUE.



22 importance

abbreviate integer or logical. Number of characters to abbreviate x axis names to. If FALSE,
no abbreviation is performed.

diag.xlab logical. Should variable names be printed diagonally (that is, in a 45 degree
angle)? Alternatively, variable names may be printed vertically by specifying
diag.xlab = FALSE and las = 2.

diag.xlab.hor numeric. Horizontal adjustment for lining up variable names with bars in the
plot if variable names are printed diagonally.

diag.xlab.vert positive integer. Vertical adjustment for position of variable names, if printed
diagonally. Corresponds to the number of character spaces added after variable
names.

cex.axis numeric. The magnification to be used for axis annotation relative to the current
setting of cex.

legend logical or character. Should legend be plotted for multinomial or multivariate
responses and if so, where? Defaults to "topright", which puts the legend
in the top-right corner of the plot. Alternatively, "bottomright", "bottom",
"bottomleft", "left", "topleft", "top", "topright", "right", "center"
and FALSE (which omits the legend) can be specified.

... further arguments to be passed to barplot (only used when plot = TRUE).

Details

See also sections 6 and 7 of Friedman & Popecus (2008).

Value

A list with two dataframes: $baseimps, giving the importances for baselearners in the ensemble,
and $varimps, giving the importances for all predictor variables.

References

Fokkema, M. (2020). Fitting prediction rule ensembles with R package pre. Journal of Statistical
Software, 92(12), 1-30. doi: 10.18637/jss.v092.i12

Fokkema, M. & Strobl, C. (2020). Fitting prediction rule ensembles to psychological research data:
An introduction and tutorial. Psychological Methods 25(5), 636-652. doi: 10.1037/met0000256,
https://arxiv.org/abs/1907.05302

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954 doi: 10.1214/07AOAS148.

See Also

pre

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
# calculate global importances:

https://doi.org/10.18637/jss.v092.i12
https://doi.org/10.1037/met0000256
https://arxiv.org/abs/1907.05302
https://doi.org/10.1214/07-AOAS148
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importance(airq.ens)
# calculate local importances (default: over 25% highest predicted values):
importance(airq.ens, global = FALSE)
# calculate local importances (custom: over 25% lowest predicted values):
importance(airq.ens, global = FALSE, quantprobs = c(0, .25))

interact Calculate interaction statistics for variables in a prediction rule en-
semble (pre)

Description

interact calculates test statistics for assessing the strength of interactions between a set of user-
specified input variable(s), and all other input variables.

Usage

interact(
object,
varnames = NULL,
nullmods = NULL,
penalty.par.val = "lambda.1se",
quantprobs = c(0.05, 0.95),
plot = TRUE,
col = c("darkgrey", "lightgrey"),
ylab = "Interaction strength",
main = "Interaction test statistics",
se.linewidth = 0.05,
legend.text = c("observed", "null model median"),
parallel = FALSE,
k = 10,
verbose = FALSE,
...

)

Arguments

object an object of class pre.

varnames character vector. Names of variables for which interaction statistics should be
calculated. If NULL, interaction statistics for all predictor variables with non-zeor
coefficients will be calculated (which may take a long time).

nullmods object with bootstrapped null interaction models, resulting from application of
bsnullinteract.

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
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"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

quantprobs numeric vector of length two. Probabilities that should be used for plotting
the range of bootstrapped null interaction model statistics. Only used when
nullmods argument is specified and plot = TRUE. The default yields sample
quantiles corresponding to .05 and .95 probabilities.

plot logical. Should interaction statistics be plotted?

col character vector of length one or two. The first value specifies the color to be
used for plotting the interaction statistic from the training data, the second color
is used for plotting the interaction statistic from the bootstrapped null interaction
models. Only used when plot = TRUE. Only the first element will be used if
nullmods = NULL.

ylab character string. Label to be used for plotting y-axis.

main character. Main title for the bar plot.

se.linewidth numeric. Width of the whiskers of the plotted standard error bars (in inches).

legend.text character vector of length two to be used for plotting the legend. Only used
when nullmods is specified. If FALSE, no legend is plotted.

parallel logical. Should parallel foreach be used? Must register parallel beforehand,
such as doMC or others.

k integer. Calculating interaction test statistics is computationally intensive, so
calculations are split up in several parts to prevent memory allocation errors. If
a memory allocation error still occurs, increase k.

verbose logical. Should progress information be printed to the command line?

... Additional arguments to be passed to barplot.

Details

Can be computationally intensive, especially when nullmods is specified, in which case setting
parallel = TRUE may improve speed.

Value

Function interact() returns and plots interaction statistics for the specified predictor variables.
If nullmods is not specified, it returns and plots only the interaction test statistics for the specified
fitted prediction rule ensemble. If nullmods is specified, the function returns a list, with elements
$fittedH2, containing the interaction statistics of the fitted ensemble, and $nullH2, which contains
the interaction test statistics for each of the bootstrapped null interaction models.

If plot = TRUE (the default), a barplot is created with the interaction test statistic from the fitted
prediction rule ensemble. If nullmods is specified, bars representing the median of the distribution
of interaction test statistics of the bootstrapped null interaction models are plotted. In addition,
error bars representing the quantiles of the distribution (their value specified by the quantprobs
argument) are plotted. These allow for testing the null hypothesis of no interaction effect for each
of the input variables.
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Note that the error rates of null hypothesis tests of interaction effects have not yet been studied in
detail, but results are likely to get more reliable when the number of bootstrapped null interaction
models is larger. The default of the bsnullinteract function is to generate 10 bootstrapped null
interaction datasets, to yield shorter computation times. To obtain a more reliable result, however,
users are advised to set the nsamp argument ≥ 100.

See also section 8 of Friedman & Popescu (2008).

References

Fokkema, M. (2020). Fitting prediction rule ensembles with R package pre. Journal of Statistical
Software, 92(12), 1-30. doi: 10.18637/jss.v092.i12

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954, doi: 10.1214/07AOAS148.

See Also

pre, bsnullinteract

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data=airquality[complete.cases(airquality),])
interact(airq.ens, c("Temp", "Wind", "Solar.R"))

maxdepth_sampler Sampling function generator for specifying varying maximum tree
depth in a prediction rule ensemble (pre)

Description

maxdepth_sampler generates a random sampling function, governed by a pre-specified average
tree depth.

Usage

maxdepth_sampler(av.no.term.nodes = 4L, av.tree.depth = NULL)

Arguments

av.no.term.nodes

integer of length one. Specifies the average number of terminal nodes in trees
used for rule inducation.

av.tree.depth integer of length one. Specifies the average maximum tree depth in trees used
for rule induction.

https://doi.org/10.18637/jss.v092.i12
https://doi.org/10.1214/07-AOAS148
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Details

The original RuleFit implementation varying tree sizes for rule induction. Furthermore, it defined
tree size in terms of the number of terminal nodes. In contrast, function pre defines the maximum
tree size in terms of a (constant) tree depth. Function maxdepth_sampler allows for mimicing
the behavior of the orignal RuleFit implementation. In effect, the maximum tree depth is sampled
from an exponential distribution with learning rate 1/(L̄− 2), where L̄ ≥ 2 represents the average
number of terminal nodes for trees in the ensemble. See Friedman & Popescu (2008, section 3.3).

Value

Returns a random sampling function with single argument ’ntrees’, which can be supplied to the
maxdepth argument of function pre to specify varying tree depths.

References

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954.

See Also

pre

Examples

## RuleFit default is max. 4 terminal nodes, on average:
func1 <- maxdepth_sampler()
set.seed(42)
func1(10)
mean(func1(1000))

## Max. 16 terminal nodes, on average (equals average maxdepth of 4):
func2 <- maxdepth_sampler(av.no.term.nodes = 16L)
set.seed(42)
func2(10)
mean(func2(1000))

## Max. tree depth of 3, on average:
func3 <- maxdepth_sampler(av.tree.depth = 3)
set.seed(42)
func3(10)
mean(func3(1000))

## Max. 2 of terminal nodes, on average (always yields maxdepth of 1):
func4 <- maxdepth_sampler(av.no.term.nodes = 2L)
set.seed(42)
func4(10)
mean(func4(1000))

## Create rule ensemble with varying maxdepth:
set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),],
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maxdepth = func1)
airq.ens

pairplot Create partial dependence plot for a pair of predictor variables in a
prediction rule ensemble (pre)

Description

pairplot creates a partial dependence plot to assess the effects of a pair of predictor variables on
the predictions of the ensemble. Note that plotting partial dependence is computationally intensive.
Computation time will increase fast with increasing numbers of observations and variables. For
large datasets, package ‘plotmo‘ (Milborrow, 2019) provides more efficient functions for plotting
partial dependence and also supports ‘pre‘ models.

Usage

pairplot(
object,
varnames,
type = "both",
penalty.par.val = "lambda.1se",
nvals = c(20L, 20L),
pred.type = "response",
...

)

Arguments

object an object of class pre

varnames character vector of length two. Currently, pairplots can only be requested for
non-nominal variables. If varnames specifies the name(s) of variables of class
"factor", an error will be printed.

type character string. Type of plot to be generated. type = "heatmap" yields a
heatmap plot, type = "contour" yields a contour plot, type = "both" yields
a heatmap plot with added contours, type = "perspective" yields a three di-
mensional plot.

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).
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nvals optional numeric vector of length 2. For how many values of x1 and x2 should
partial dependence be plotted? If NULL, all observed values for the two predictor
variables specified will be used (see details).

pred.type character string. Type of prediction to be plotted on z-axis. pred.type = "response"
gives fitted values for continuous outputs and fitted probabilities for nominal
outputs. pred.type = "link" gives fitted values for continuous outputs and lin-
ear predictor values for nominal outputs.

... Additional arguments to be passed to image, contour or persp (depending on
whether type is specified to be "heatmap", "contour", "both" or "perspective").

Details

By default, partial dependence will be plotted for each combination of 20 values of the specified
predictor variables. When nvals = NULL is specified a dependence plot will be created for every
combination of the unique observed values of the two predictor variables specified. Therefore, us-
ing nvals = NULL will often result in long computation times, and / or memory allocation errors.
Also, pre ensembles derived from training datasets that are very wide or long may result in long
computation times and / or memory allocation errors. In such cases, reducing the values supplied to
nvals will reduce computation time and / or memory allocation errors. When the nvals argument is
supplied, values for the minimum, maximum, and nvals - 2 intermediate values of the predictor vari-
able will be plotted. Furthermore, if none of the variables specified appears in the final prediction
rule ensemble, an error will occur.

See also section 8.1 of Friedman & Popescu (2008).

Note

Function pairplot uses package akima to construct interpolated surfaces and has an ACM license
that restricts applications to non-commercial usage, see https://www.acm.org/publications/
policies/software-copyright-notice Function pairplot prints a note referring to this ACM
licence.

References

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954.

Milborrow, S. (2019). plotmo: Plot a model’s residuals, response, and partial dependence plots.
https://CRAN.R-project.org/package=plotmo

See Also

pre, singleplot

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
pairplot(airq.ens, c("Temp", "Wind"))

https://www.acm.org/publications/policies/software-copyright-notice
https://www.acm.org/publications/policies/software-copyright-notice
https://CRAN.R-project.org/package=plotmo
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plot.pre Plot method for class pre

Description

plot.pre creates one or more plots depicting the rules in the final ensemble as simple decision
trees.

Usage

## S3 method for class 'pre'
plot(
x,
penalty.par.val = "lambda.1se",
linear.terms = TRUE,
nterms = NULL,
fill = "white",
ask = FALSE,
exit.label = "0",
standardize = FALSE,
plot.dim = c(3, 3),
...

)

Arguments

x an object of class pre.
penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

linear.terms logical. Should linear terms be included in the plot?

nterms numeric. The total number of terms (or rules, if linear.terms = FALSE) being
plotted. Default is NULL, resulting in all terms of the final ensemble to be plotted.

fill character of length 1 or 2. Background color(s) for terminal panels. If one color
is specified, all terminal panels will have the specified background color. If two
colors are specified (the default, the first color will be used as the background
color for rules with a positively valued coefficient; the second color for rules
with a negatively valued coefficient.

ask logical. Should user be prompted before starting a new page of plots?

exit.label character string. Label to be printed in nodes to which the rule does not apply
(“exit nodes”)?
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standardize logical. Should printed importances be standardized? See importance.

plot.dim integer vector of length two. Specifies the number of rows and columns in the
plot. The default yields a plot with three rows and three columns, depicting nine
baselearners per plotting page.

... Arguments to be passed to gpar.

See Also

pre, print.pre

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
plot(airq.ens)

pre Derive a prediction rule ensemble

Description

pre derives a sparse ensemble of rules and/or linear functions for prediction of a continuous, binary,
count, multinomial, multivariate continuous or survival response.

Usage

pre(
formula,
data,
family = gaussian,
use.grad = TRUE,
weights,
type = "both",
sampfrac = 0.5,
maxdepth = 3L,
learnrate = 0.01,
mtry = Inf,
ntrees = 500,
confirmatory = NULL,
removecomplements = TRUE,
removeduplicates = TRUE,
winsfrac = 0.025,
normalize = TRUE,
standardize = FALSE,
ordinal = TRUE,
nfolds = 10L,
tree.control,



pre 31

tree.unbiased = TRUE,
verbose = FALSE,
par.init = FALSE,
par.final = FALSE,
sparse = FALSE,
...

)

Arguments

formula a symbolic description of the model to be fit of the form y ~ x1 + x2 + ...+ xn.
Response (left-hand side of the formula) should be of class numeric (for family
= "gaussian" or "mgaussian"), integer (for family = "poisson"), factor (for
family = "binomial" or "multinomial"). See Examples below. Note that the
minus sign (-) may not be used in the formula to omit the intercept or variables in
data, and neither should + 0 be used to omit the intercept. To omit the intercept
from the final ensemble, add intercept = FALSE to the call (although omitting
the intercept from the final ensemble will only very rarely be appropriate). To
omit variables from the final ensemble, make sure they are excluded from data.

data data.frame containing the variables in the model. Response must be of class
factor for classification, numeric for (count) regression, Surv for survival re-
gression. Input variables must be of class numeric, factor or ordered factor.
Otherwise, pre will attempt to recode.

family specifies a glm family object. Can be a character string (i.e., "gaussian",
"binomial", "poisson", "multinomial", "cox" or "mgaussian"), or a cor-
responding family object (e.g., gaussian, binomial or poisson, see family).
Specification of argument family is strongly advised but not required. If family
is not specified, Otherwise, the program will try to make an informed guess,
based on the class of the response variable specified in formula. als see Exam-
ples below.

use.grad logical. Should gradient boosting with regression trees be employed when learnrate
> 0? If TRUE, use trees fitted by ctree or rpart as in Friedman (2001), but with-
out the line search. If use.grad = FALSE, glmtree instead of ctree will be em-
ployed for rule induction, yielding longer computation times, higher complexity,
but possibly higher predictive accuracy. See Details for supported combinations
of family, use.grad and learnrate.

weights optional vector of observation weights to be used for deriving the ensemble.

type character. Specifies type of base learners to include in the ensemble. Defaults
to "both" (initial ensemble will include both rules and linear functions). Other
option are "rules" (prediction rules only) or "linear" (linear functions only).

sampfrac numeric value > 0 and ≤ 1. Specifies the fraction of randomly selected training
observations used to produce each tree. Values < 1 will result in sampling
without replacement (i.e., subsampling), a value of 1 will result in sampling
with replacement (i.e., bootstrap sampling). Alternatively, a sampling function
may be supplied, which should take arguments n (sample size) and weights.

maxdepth positive integer. Maximum number of conditions in rules. If length(maxdepth)
== 1, it specifies the maximum depth of of each tree grown. If length(maxdepth)
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== ntrees, it specifies the maximum depth of every consecutive tree grown. Al-
ternatively, a random sampling function may be supplied, which takes argument
ntrees and returns integer values. See also maxdepth_sampler.

learnrate numeric value > 0. Learning rate or boosting parameter.
mtry positive integer. Number of randomly selected predictor variables for creating

each split in each tree. Ignored when tree.unbiased=FALSE.
ntrees positive integer value. Number of trees to generate for the initial ensemble.
confirmatory character vector. Specifies one or more confirmatory terms to be included in the

final ensemble. Linear terms can be specified as the name of a predictor variable
included in data, rules can be specified as, for example, "x1 > 6 & x2 <= 8",
where x1 and x2 should be names of variables in data. Terms thus specified
will be included in the final ensemble, as their coefficients will not be penalized
in the estimation.

removecomplements

logical. Remove rules from the ensemble which are identical to (1 - an earlier
rule)?

removeduplicates

logical. Remove rules from the ensemble which are identical to an earlier rule?
winsfrac numeric value > 0 and ≤ 0.5. Quantiles of data distribution to be used for

winsorizing linear terms. If set to 0, no winsorizing is performed. Note that
ordinal variables are included as linear terms in estimating the regression model
and will also be winsorized.

normalize logical. Normalize linear variables before estimating the regression model?
Normalizing gives linear terms the same a priori influence as a typical rule, by
dividing the (winsorized) linear term by 2.5 times its SD.

standardize logical. Should rules and linear terms be standardized to have SD equal to 1 be-
fore estimating the regression model? This will also standardize the dummified
factors, users are advised to use the default standardize = FALSE.

ordinal logical. Should ordinal variables (i.e., ordered factors) be treated as continuous
for generating rules? TRUE (the default) generally yields simpler rules, shorter
computation times and better generalizability of the final ensemble.

nfolds positive integer. Number of cross-validation folds to be used for selecting the
optimal value of the penalty parameter λ in selecting the final ensemble.

tree.control list with control parameters to be passed to the tree fitting function, generated us-
ing ctree_control, mob_control (if use.grad = FALSE), or rpart.control
(if tree.unbiased = FALSE).

tree.unbiased logical. Should an unbiased tree generation algorithm be employed for rule gen-
eration? Defaults to TRUE, if set to FALSE, rules will be generated employing the
CART algorithm (which suffers from biased variable selection) as implemented
in rpart. See details below for possible combinations with family, use.grad
and learnrate.

verbose logical. Should progress be printed to the command line?
par.init logical. Should parallel foreach be used to generate initial ensemble? Only

used when learnrate == 0. Note: Must register parallel beforehand, such as
doMC or others. Furthermore, setting par.init = TRUE will likely only increase
computation time for smaller datasets.
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par.final logical. Should parallel foreach be used to perform cross validation for se-
lecting the final ensemble? Must register parallel beforehand, such as doMC or
others.

sparse logical. Should sparse design matrices be used? Likely improves computation
times for large datasets.

... Additional arguments to be passed to cv.glmnet.

Details

Note: obervations with missing values will be removed prior to analysis (and a warning issued).

In some cases, duplicated variable names may appear in the model. For example, the first variable
is a factor named ’V1’ and there are also variables named ’V10’ and/or ’V11’ and/or ’V12’ (etc).
Then for for the binary factor V1, dummy contrast variables will be created, named ’V10’, ’V11’,
’V12’ (etc). As should be clear from this example, this yields duplicated variable names, which
may yield problems, for example in the calculation of predictions and importances, later on. This
can be prevented by renaming factor variables with numbers in their name, prior to analysis.

The table below provides an overview of combinations of response variable types, use.grad,
tree.unbiased and learnrate settings that are supported, and the tree induction algorithm that
will be employed as a result:

use.grad tree.unbiased learnrate family tree alg. Response variable format

TRUE TRUE 0 gaussian ctree Single, numeric (non-integer)
TRUE TRUE 0 mgaussian ctree Multiple, numeric (non-integer)
TRUE TRUE 0 binomial ctree Single, factor with 2 levels
TRUE TRUE 0 multinomial ctree Single, factor with >2 levels
TRUE TRUE 0 poisson ctree Single, integer
TRUE TRUE 0 cox ctree Object of class ’Surv’

TRUE TRUE >0 gaussian ctree Single, numeric (non-integer)
TRUE TRUE >0 mgaussian ctree Multiple, numeric (non-integer)
TRUE TRUE >0 binomial ctree Single, factor with 2 levels
TRUE TRUE >0 multinomial ctree Single, factor with >2 levels
TRUE TRUE >0 poisson ctree Single, integer
TRUE TRUE >0 cox ctree Object of class ’Surv’

FALSE TRUE 0 gaussian glmtree Single, numeric (non-integer)
FALSE TRUE 0 binomial glmtree Single, factor with 2 levels
FALSE TRUE 0 poisson glmtree Single, integer

FALSE TRUE >0 gaussian glmtree Single, numeric (non-integer)
FALSE TRUE >0 binomial glmtree Single, factor with 2 levels
FALSE TRUE >0 poisson glmtree Single, integer

TRUE FALSE 0 gaussian rpart Single, numeric (non-integer)
TRUE FALSE 0 binomial rpart Single, factor with 2 levels
TRUE FALSE 0 multinomial rpart Single, factor with >2 levels
TRUE FALSE 0 poisson rpart Single, integer
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TRUE FALSE 0 cox rpart Object of class ’Surv’

TRUE FALSE >0 gaussian rpart Single, numeric (non-integer)
TRUE FALSE >0 binomial rpart Single, factor with 2 levels
TRUE FALSE >0 poisson rpart Single, integer
TRUE FALSE >0 cox rpart Object of class ’Surv’

If an error along the lines of ’factor ... has new levels ...’ is encountered, consult ?rare_level_sampler
for explanation and solutions.

Value

An object of class pre. It contains the initial ensemble of rules and/or linear terms and a range
of possible final ensembles. By default, the final ensemble employed by all other methods and
functions in package pre is selected using the ’minimum cross validated error plus 1 standard
error’ criterion. All functions and methods for objects of class pre take a penalty.parameter.val
argument, which can be used to select a different criterion.

Note

Parts of the code for deriving rules from the nodes of trees was copied with permission from an
internal function of the partykit package, written by Achim Zeileis and Torsten Hothorn.

References

Fokkema, M. (2020). Fitting prediction rule ensembles with R package pre. Journal of Statistical
Software, 92(12), 1-30. doi: 10.18637/jss.v092.i12

Fokkema, M. & Strobl, C. (2020). Fitting prediction rule ensembles to psychological research data:
An introduction and tutorial. Psychological Methods 25(5), 636-652. doi: 10.1037/met0000256,
https://arxiv.org/abs/1907.05302

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals
of Applied Statistics, 29(5), 1189-1232.

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954, doi: 10.1214/07AOAS148.

Hothorn, T., & Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R.
Journal of Machine Learning Research, 16, 3905-3909.

See Also

print.pre, plot.pre, coef.pre, importance, predict.pre, interact, cvpre

Examples

## Fit pre to a continuous response:
airq <- airquality[complete.cases(airquality), ]
set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airq)
airq.ens

https://doi.org/10.18637/jss.v092.i12
https://doi.org/10.1037/met0000256
https://arxiv.org/abs/1907.05302
https://doi.org/10.1214/07-AOAS148
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## Fit pre to a binary response:
airq2 <- airquality[complete.cases(airquality), ]
airq2$Ozone <- factor(airq2$Ozone > median(airq2$Ozone))
set.seed(42)
airq.ens2 <- pre(Ozone ~ ., data = airq2, family = "binomial")
airq.ens2

## Fit pre to a multivariate continuous response:
airq3 <- airquality[complete.cases(airquality), ]
set.seed(42)
airq.ens3 <- pre(Ozone + Wind ~ ., data = airq3, family = "mgaussian")
airq.ens3

## Fit pre to a multinomial response:
set.seed(42)
iris.ens <- pre(Species ~ ., data = iris, family = "multinomial")
iris.ens

## Fit pre to a survival response:
library("survival")
lung <- lung[complete.cases(lung), ]
set.seed(42)
lung.ens <- pre(Surv(time, status) ~ ., data = lung, family = "cox")
lung.ens

## Fit pre to a count response:
## Generate random data (partly based on Dobson (1990) Page 93: Randomized
## Controlled Trial):
counts <- rep(as.integer(c(18, 17, 15, 20, 10, 20, 25, 13, 12)), times = 10)
outcome <- rep(gl(3, 1, 9), times = 10)
treatment <- rep(gl(3, 3), times = 10)
noise1 <- 1:90
set.seed(1)
noise2 <- rnorm(90)
countdata <- data.frame(treatment, outcome, counts, noise1, noise2)
set.seed(42)
count.ens <- pre(counts ~ ., data = countdata, family = "poisson")
count.ens

predict.gpe Predicted values based on gpe ensemble

Description

Predict function for gpe

Usage

## S3 method for class 'gpe'
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predict(
object,
newdata = NULL,
type = "link",
penalty.par.val = "lambda.1se",
...

)

Arguments

object of class gpe

newdata optional new data to compute predictions for

type argument passed to predict.cv.glmnet

penalty.par.val

argument passed to s argument of predict.cv.glmnet

... Unused

Details

The initial training data is used if newdata = NULL.

See Also

gpe

predict.pre Predicted values based on final prediction rule ensemble

Description

predict.pre generates predictions based on the final prediction rule ensemble, for training or new
(test) observations

Usage

## S3 method for class 'pre'
predict(
object,
newdata = NULL,
type = "link",
penalty.par.val = "lambda.1se",
...

)
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Arguments

object object of class pre.

newdata optional data.frame of new (test) observations, including all predictor variables
used for deriving the prediction rule ensemble.

type character string. The type of prediction required; the default type = "link" is
on the scale of the linear predictors. Alternatively, for count and factor outputs,
type = "response" may be specified to obtain the fitted mean and fitted proba-
bilities, respectively; type = "class" returns the predicted class membership.

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

... further arguments to be passed to predict.cv.glmnet.

Details

If newdata is not provided, predictions for training data will be returned.

See Also

pre, plot.pre, coef.pre, importance, cvpre, interact, print.pre, predict.cv.glmnet

Examples

set.seed(1)
train <- sample(1:sum(complete.cases(airquality)), size = 100)
set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),][train,])
predict(airq.ens)
predict(airq.ens, newdata = airquality[complete.cases(airquality),][-train,])

print.gpe Print a General Prediction Ensemble (gpe)

Description

Print a General Prediction Ensemble (gpe)

Usage

## S3 method for class 'gpe'
print(x, penalty.par.val = "lambda.1se", digits = getOption("digits"), ...)
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Arguments

x An object of class gpe.
penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

digits Number of decimal places to print
... Additional arguments, currently not used.

See Also

gpe print.pre

print.pre Print method for objects of class pre

Description

print.pre prints information about the generated prediction rule ensemble to the command line

Usage

## S3 method for class 'pre'
print(x, penalty.par.val = "lambda.1se", digits = getOption("digits"), ...)

Arguments

x An object of class pre.
penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

digits Number of decimal places to print
... Additional arguments, currently not used.

Details

Note that the cv error is estimated with data that was also used for learning rules and may be too
optimistic. Use cvpre to obtain a more realistic estimate of future prediction error.
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Value

Prints information about the fitted prediction rule ensemble.

See Also

pre, summary.pre, plot.pre, coef.pre, importance, predict.pre, interact, cvpre

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
print(airq.ens)

rare_level_sampler Dealing with rare factor levels in fitting prediction rule ensembles.

Description

Provides a sampling function to be supplied to the sampfrac argument of function pre, making
sure that each level of specified factor(s) are present in each sample.

Usage

rare_level_sampler(factors, data, sampfrac = 0.5, warning = FALSE)

Arguments

factors Character vector with name(s) of factors with rare levels.

data data.frame containing the variables in the model. Response must be of class
factor for classification, numeric for (count) regression, Surv for survival re-
gression. Input variables must be of class numeric, factor or ordered factor.
Otherwise, pre will attempt to recode.

sampfrac numeric value > 0 and ≤ 1. Specifies the fraction of randomly selected training
observations used to produce each tree. Values < 1 will result in sampling
without replacement (i.e., subsampling), a value of 1 will result in sampling
with replacement (i.e., bootstrap sampling). Alternatively, a sampling function
may be supplied, which should take arguments n (sample size) and weights.

warning logical. Whether a warning should be printed if observations with rare factor
levels are added to the training sample of the current iteration.
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Details

Categorical predictor variables (factors) with rare levels may be problematic in boosting algorithms
employing sampling (which is employed by default in function pre).

If a sample in a given boosting iteration does not have any observations with a given (rare) level of
a factor, while this level is present in the full training dataset, and the factor is selected for splitting
in the tree, then no prediction for that level of the factor can be generated, resulting in an error.
Note that boosting methods other than pre that also employ sampling (e.g., gbm or xgboost) may
not generate an error in such cases, but also do not document how intermediate predictions are
generated in such a case. It is likely that these methods use one-hot-encoding of factors, which
from a perspective of model interpretation introduces new problems, especially when the aim is to
obtain a sparse set of rules as in ‘pre‘.

With function pre(), the rare-factor-level issue, if encountered, can be dealt with by the user in one
of the following ways (in random order):

• Use a sampling function that guarantees inclusion of rare factor levels in each sample. E.g.,
use rare_level_sampler, yielding a sampling function which creates training samples guar-
anteed to include each level of specified factor(s). Advantage: No loss of information, easy to
implement, guaranteed to solve the issue. Disadvantage: May result in oversampling of ob-
servations with rare factor levels, potentially biasing results. The bias is likely small though,
and will be larger for smaller sample sizes and sampling fractions, and for larger numbers of
rare levels. The latter will also increase computational demands.

• Specify learnrate = 0. This results in a (su)bagging instead of boosting approach. Advan-
tage: Eliminates the rare-factor-level issue completely, because intermediate predictions need
not be computed. Disadvantage: Boosting with low learning rate often improves predictive
accuracy.

• Data pre-processing: Before running function pre(), combine rare factor levels with other
levels of the factors. Advantage: Limited loss of information. Disadvantage: Likely, but not
guaranteed to solve the issue.

• Data pre-processing: Apply one-hot encoding to the predictor matrix before applying function
‘pre()‘. This can easily be done through applying function model.matrix. Advantage: Guar-
anteed to solve the error, easy to implement. Disadvantage: One-hot-encoding increases the
number of predictor variables which may reduce interpretability and, but probably to a lesser
extent, accuracy.

• Data pre-processing: Remove observations with rare factor levels from the dataset before
running function pre(). Advantage: Guaranteed to solve the error. Disadvantage: Removing
outliers results in a loss of information, and may bias the results.

• Increase the value of sampfrac argument of function pre(). Advantage: Easy to implement.
Disadvantage: Larger samples are more likely but not guaranteed to contain all possible factor
levels, thus not guaranteed to solve the issue.

Value

A sampling function, which generates sub- or bootstrap samples as usual in function pre, but checks
if all levels of the specified factor(s) are present and adds observation with those levels if not. If
warning = TRUE, a warning is issued).
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See Also

pre

Examples

## Create dataset with two factors containing rare levels
dat <- iris[iris$Species != "versicolor", ]
dat <- rbind(dat, iris[iris$Species == "versicolor", ][1:5, ])
dat$factor2 <- factor(rep(1:21, times = 5))

## Set up sampling function
samp_func <- rare_level_sampler(c("Species", "factor2"), data = dat,

sampfrac = .51, warning = TRUE)

## Illustrate behavior of sampling function
N <- nrow(dat)
wts <- rep(1, times = nrow(dat))
set.seed(3)
dat[samp_func(n = N, weights = wts), ] # single sample
for (i in 1:500) dat[samp_func(n = N, weights = wts), ]
warnings() # to illustrates warnings that may occur when fitting a full PRE

## Illustrate use of function generator with function pre:
## (Note: low ntrees value merely to reduce computation time for the example)
set.seed(42)
# iris.ens <- pre(Petal.Width ~ . , data = dat, ntrees = 20) # would yield error
iris.ens <- pre(Petal.Width ~ . , data = dat, ntrees = 20,

sampfrac = samp_func) # should work

rTerm Wrapper Functions for terms in gpe

Description

Wrapper functions for terms in gpe.

Usage

rTerm(x)

lTerm(x, lb = -Inf, ub = Inf, scale = 1/0.4)

eTerm(x, scale = 1/0.4)

Arguments

x Input symbol.

lb Lower quantile when winsorizing. -Inf yields no winsorizing in the lower tail.
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ub Lower quantile when winsorizing. Inf yields no winsorizing in the upper tail.

scale Inverse value to time x by. Usually the standard deviation is used. 0.4 / scale
is used as the multiplier as suggested in Friedman & Popescu (2008) and gives
each linear term the same a-priori influence as a typical rule.

Details

The motivation to use wrappers is to ease getting the different terms as shown in the examples and
to simplify the formula passed to cv.glmnet in gpe. lTerm potentially rescales and/or winsorizes
x depending on the input. eTerm potentially rescale x depending on the input.

Value

x potentially transformed with additional information provided in the attributes.

References

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954.

See Also

gpe, gpe_trees gpe_linear gpe_earth

Examples

mt <- terms(
~ rTerm(x1 < 0) + rTerm(x2 > 0) + lTerm(x3) + eTerm(x4),
specials = c("rTerm", "lTerm", "eTerm"))
attr(mt, "specials")
# $rTerm
# [1] 1 2
#
# $lTerm
# [1] 3
#
# $eTerm
# [1] 4

singleplot Create partial dependence plot for a single variable in a prediction
rule ensemble (pre)
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Description

singleplot creates a partial dependence plot, which shows the effect of a predictor variable on
the ensemble’s predictions. Note that plotting partial dependence is computationally intensive.
Computation time will increase fast with increasing numbers of observations and variables. For
large datasets, package ‘plotmo‘ (Milborrow, 2019) provides more efficient functions for plotting
partial dependence and also supports ‘pre‘ models.

Usage

singleplot(
object,
varname,
penalty.par.val = "lambda.1se",
nvals = NULL,
type = "response",
ylab = "predicted",
...

)

Arguments

object an object of class pre

varname character vector of length one, specifying the variable for which the partial de-
pendence plot should be created. Note that varname should correspond to the
variable as described in the model formula used to generate the ensemble (i.e.,
including functions applied to the variable).

penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

nvals optional numeric vector of length one. For how many values of x should the
partial dependence plot be created?

type character string. Type of prediction to be plotted on y-axis. type = "response"
gives fitted values for continuous outputs and fitted probabilities for nominal
outputs. type = "link" gives fitted values for continuous outputs and linear
predictor values for nominal outputs.

ylab character. Label to be printed on the y-axis.

... Further arguments to be passed to plot.default.

Details

By default, a partial dependence plot will be created for each unique observed value of the specified
predictor variable. When the number of unique observed values is large, this may take a long



44 summary.gpe

time to compute. In that case, specifying the nvals argument can substantially reduce computing
time. When the nvals argument is supplied, values for the minimum, maximum, and (nvals -2)
intermediate values of the predictor variable will be plotted. Note that nvals can be specified only
for numeric and ordered input variables. If the plot is requested for a nominal input variable, the
nvals argument will be ignored and a warning printed.

See also section 8.1 of Friedman & Popescu (2008).

References

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of
Applied Statistics, 2(3), 916-954.

Milborrow, S. (2019). plotmo: Plot a model’s residuals, response, and partial dependence plots.
https://CRAN.R-project.org/package=plotmo

See Also

pre, pairplot

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
singleplot(airq.ens, "Temp")

summary.gpe Summary method for a General Prediction Ensemble (gpe)

Description

summary.gpe prints information about the generated ensemble to the command line

Usage

## S3 method for class 'gpe'
summary(object, penalty.par.val = "lambda.1se", ...)

Arguments

object An object of class gpe.
penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

... Additional arguments, currently not used.

https://CRAN.R-project.org/package=plotmo
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Details

Note that the cv error is estimated with data that was also used for learning rules and may be too
optimistic.

Value

Prints information about the fitted ensemble.

See Also

gpe, print.gpe, coef.gpe, predict.gpe

summary.pre Summary method for objects of class pre

Description

summary.pre prints information about the generated prediction rule ensemble to the command line

Usage

## S3 method for class 'pre'
summary(object, penalty.par.val = "lambda.1se", ...)

Arguments

object An object of class pre.
penalty.par.val

character or numeric. Value of the penalty parameter λ to be employed for
selecting the final ensemble. The default "lambda.min" employs the λ value
within 1 standard error of the minimum cross-validated error. Alternatively,
"lambda.min" may be specified, to employ the λ value with minimum cross-
validated error, or a numeric value > 0 may be specified, with higher values
yielding a sparser ensemble. To evaluate the trade-off between accuracy and
sparsity of the final ensemble, inspect pre_object$glmnet.fit and plot(pre_object$glmnet.fit).

... Additional arguments, currently not used.

Details

Note that the cv error is estimated with data that was also used for learning rules and may be too
optimistic. Use cvpre to obtain a more realistic estimate of future prediction error.

Value

Prints information about the fitted prediction rule ensemble.
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See Also

pre, print.pre, plot.pre, coef.pre, importance, predict.pre, interact, cvpre

Examples

set.seed(42)
airq.ens <- pre(Ozone ~ ., data = airquality[complete.cases(airquality),])
summary(airq.ens)
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